Micro fabrication of planar-type structures on graphite layer using Focused Ion Beam and Transport characterization

<u>V. Gunasekaran</u>,^{*} S. J. Kim[#]

Nano Materials & System Lab, Dept of Mechanical Engineering Jeju National University, Jeju 690-756 Republic of Korea Email: *guna@cheju.ac.kr, [#]kimsangj@cheju.ac.kr

We have demonstrated the fabrication of planar-type structures on thin graphite layer using focused ion beam (FIB) 3-D etching technique and their electrical transport characteristics results. In this study, we used the mechanical exfoliation technique to obtain thin graphite crystallites. Figure 1 shows the SEM image of exfoliated graphite layer on Si/SiO₂ substrates. We have fabricated several inplane areas of planar-type structures on thin graphite layers (thickness ~ 500 nm) using focused ion beam. Those in-plane area sizes were 10 μ m x 10 μ m, 6 μ m x 5 μ m and 6 μ m x 2 μ m. These in-plane areas were etched by the tilting the sample stage by 30° anticlockwise with respect to ion beam and milling along *ab*-plane. The *c*-axis stack with height of several nanometers were fabricated (Fig.2) by rotating the sample stage by an angle of 180° and then tilted by 60° anticlockwise with respect to ion beam and milled along the *c*-axis¹. The electrical transport characteristics were performed for both *ab*-plane and *c*-axis stack structures using four-probe contact measurement by closed-cycle refrigerator system.

Resistance (*R*)-temperature (*T*) characteristics of bare graphite flakes reveal its typical metallic behavior which is shown as inset in Fig.1. However the fabricated planar-type structures (inset in Fig.3) of all the different sizes show semiconducting behavior. Most noticeably, we find a nonlinear curve-like behavior in current (*I*) - voltage (*V*) curves at 20 K and an ohmic behavior at 300 K. An asymmetricity in I-V curves is also observed (Fig.3). We notice that the least size of planar-size structure provides more resistance to charge carriers. The fabricated *c*-axis stack also shows semiconducting behavior with high raise in resistance at 20 K (top right inset in Fig.2). However, the *c*-axis stack exhibits a symmetric non-linear I-V characteristics (Fig.4). The *c*-axis stacks behave as a high barrier to charge carrier tunnelling. This is because of the high resistance generated by weakly bonded adjacent layers in the stack². The observation of this transition from linear to non-linear behavior along *ab*-plane and *c*-axis stack of graphite sheets will open a route to new generation graphite based non-linear electronics devices.

- [1] S. J. Kim, and T. Yamashita, J. Appl. Phys. 91, 8495 (2002).
- [2] B.T. Kelly, *Physics of graphite* (Applied Science: London, 1981), pp 267-361.

Fig 1: SEM image of graphite crystallite obtained from mechanical exfoliation technique (image scale bar 100 nm.) Inset shows the perfect metallic behavior of bare graphite flake.

Fig 2: The FIB image of *c*-axis stack fabricated on graphite layer. The size was $W = 2 \mu m$, $L = 1 \mu m$, H = 200 nm. Inset(left bottom) shows the schematic diagram of stack along the *c*-axis. Inset (top right) shows the semiconducting behavior of *c*-axis stack.

Fig 3: I-V characteristics of the 6 μ m x5 μ m planar-type structure. Inset shows the FIB image of 6 μ m x5 μ m planar-type structure fabricated on a graphite layer (image scale bar 6 μ m).

Fig 4: I-V characteristics of *c*-axis stack which shows symmetric non-linear behavior.