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Understanding the electrical transport properties of nanostructures and metal-
nanostructure contacts is important before these can be fabricated into electronic devices.  
Both issues can be adequately addressed in conductive atomic force microscopy 
(C-AFM) measurements.  This paper reports C-AFM investigations of self-assembled 
silicon nanostructures fabricated using electron-beam rapid thermal annealing 
(EB-RTA),1 a process that has been shown to produce field-emission devices using 
CMOS-compatible technology.2    
 
For this study self-assembled nanostructures were formed on p-type silicon (100) using 
EB-RTA at 1000 ± 0.1˚C for 15 s, with ± 5˚C/s heating and cooling rates.  The 
topographic and C-AFM measurements were carried out simultaneously using a Veeco 
Instrument’s Dimension 3100 AFM [Fig. 1] with Pt/Ir coated Si cantilevers.  Figures 2 
and 3 demonstrate for the first time an unambiguous correlation that exists between the 
topography and current flow on these nanostructured surfaces, with ±1.0 V biases applied 
to the sample respectively.  Current on the nanostructures is typically ∼10× that on the 
surrounding silicon, which is in the noise level of the instrument (low pA range); this low 
current level is typical of unstructured silicon samples due to the presence of the native 
oxide acting as a tunnel barrier.  Average electrical current-voltage (I-V) readings for 
substrate dc bias sweep from -1.0 V to +1.0 V of five representative nanostructures of 
height of ∼8 nm are shown in Fig. 4. An asymmetric I-V relationship is observed, with an 
offset voltage of approximately 150 mV. 
   
Higher currents at the nanostructures indicate either a lowering of the tip-surface 
potential barrier height from the presence of surface states in the different facets3 or 
tunnelling from the enhanced field emission of the nanostructures. A combined effect of 
the both can also be a possibility.  Through this C-AFM imaging a deeper understanding 
of the effects of surface states and field emission on the transport properties of these and 
other nanostructures will therefore be possible.  
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Fig. 1. Schematic for conductive and tunnelling 
AFM. The tip is in contact with the sample 
surface. 

Fig. 2. Sample biased -1.0 V DC.  
 (a) Topographic, and (b) Current image. 
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Fig. 3.  Sample biased +1.0 V DC.  
 (a) Topographic, and (b) Current image.

Fig. 4.  I-V characteristics of nanostructures.  
 (DC sweep from -1.0 V to +1.0 V) 

 


