Semiconductor Crystal Islands for 3-Dimensional Integration

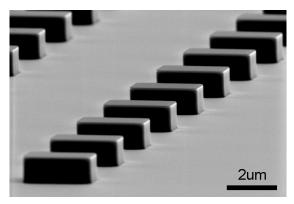
Filip Crnogorac^{*}, Jin-Hong Park, Woo-Shik Jung, Simon Wong, R. F. W. Pease Department of Electrical Engineering, Stanford University, Stanford, CA 94305

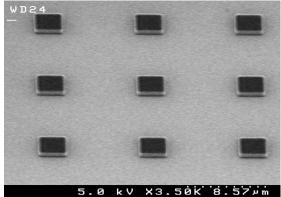
Key words: wafer bonding, monolithic integration, low-temperature processing, 3DIC.

The critical operation needed to achieve 3-dimensional integrated circuits¹ is obtaining single-crystal, device-quality semiconductor material on upper circuit layers without damaging circuits below (400°C temperature limit). Simulations suggested that microsecond pulse 532nm Nd:YAG laser could melt and crystallize amorphous Si or Ge layers without heating the circuit layers underneath². However, experimental results of unseeded (graphoepitaxy)³ and seeded (RMG) crystallization of Si and Ge indicated that much longer pulse lengths are required for high quality single crystal formation, rendering the approach not 3DIC compatible.

A more straightforward approach is to directly attach high quality crystal islands for upper layer device fabrication. The authors identified and investigated a variety of viable low-temperature (\leq 400°C) bonding methods: fusion bonding (SiO₂-SiO₂, Si-SiO₂, Ge-SiO₂), thermo-compressive bonding (Cu-Cu, Ti-Ti), as well as AlGe eutectic bonding.

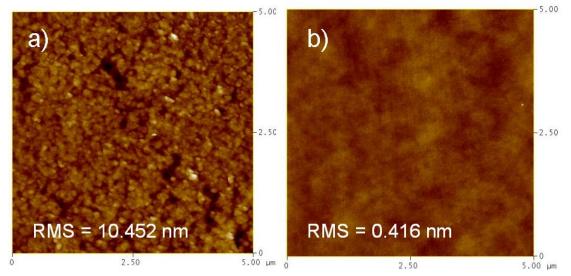
Here we report our experiments demonstrating successful attachment of both silicon and germanium crystal islands onto amorphous SiO₂ substrates using hydrophilic fusion bonding at 400°C. Prime Si (100) wafers and Ge (100) epi wafers were first patterned into islands (2um – 3000um in size) to serve as donors (Fig. 1). Oxidized (SiO₂) acceptor wafer was placed together with the donor wafer into NH₄OH:H₂O₂:H₂O (5:1:1) solution at 70°C to chemically activate the surfaces. Upon room temperature fusion bonding, samples were annealed at 400°C to strengthen the bond and eliminate interfacial voids. The island structure proved advantageous in out-diffusion of interfacial gas byproducts, thus greatly reducing the occurrence of thermally induced voids. With hydrogen induced splitting (SmartCutTM) of the donor wafer, the transfer of crystalline islands onto SiO₂ substrate was complete (Fig. 2). Finally, the remaining island surface roughness was removed using CMP touch polish (Fig. 3 and 4).


In an effort to realize upper layer devices of a monolithic 3DIC, a low-temperature (\leq 400°C) process was developed to fabricate PtSi Schottky source/drain MOSFET (Fig. 5). Experiments are underway to utilize this process to fabricate monolithic 3DIC devices on the attached Si (100) islands.


^[1] K. Banerjee et al., *Proc. IEEE* **89**, 602 (2001)

^[2] D. Witte et al., Microelectronic Engineering. 84 (2007) p.1186.

^[3] F. Crnogorac et al., Journal of Vacuum Science and Technology B, 26 (2008), p. 2520-2523.


^{*} Electronic address: filip@stanford.edu

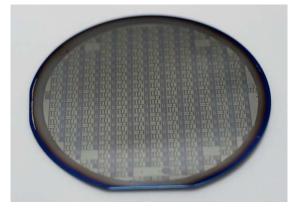


Fig 1. Donor prime Si (100) wafer with patterned islands ready to be transferred.

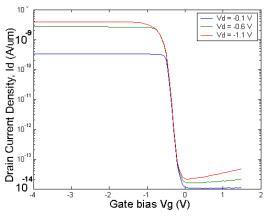

Fig 2. Resulting array of Si (100) crystal islands (400nm high) on top of SiO₂ acceptor substrate.

Fig 3. AFM scan (5µm x 5µm) of silicon island surface roughness: a) post SmartCut, and b) after touch polish (CMP) with colloidal silica based slurry.

Fig 4. Post-CMP 4" acceptor wafer with Ge (100) crystal islands on top of SiO₂.

Fig 5. I_D -V_G characteristics of low-temperature (\leq 400°C) processed PtSi Schottky source/drain MOSFET on bulk Si (100).