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Phase-shift Bragg gratings play an important role in photonic devices such as distributed-feedback 
(DFB) semiconductor lasers [1]. Figure 1(a) is a schematic of a phase-shift grating where half is 
shifted by ΔΛ to form a spatial phase-shift Δϕ=2πΔΛ/Λ. Hence a peak is generated in the 
stopband of the optical transmission spectrum at the Bragg wavelength λΒ=2nΛ, as shown in Fig. 
2(a) where a quarter-wave shift is applied (ΔΛ=Λ/2=λB/4n). To make an accurate phase-shift, high 
pattern-placement accuracy in wavelength scale is required. Most of the phase-shift gratings are 
made using scanning-electron-beam lithography (SEBL) [2][3]. However, this technique lacks 
long-range spatial-phase coherence due to various distortions in electron-beam systems.  

In this paper, we describe a novel method, called sampled Bragg grating (SBG), to achieve an 
equivalent phase-shift, without the use of SEBL. A uniform grating is modulated by a sampling 
function S(z) with period P to form an SBG, as shown in Fig. 1(b). The SBG has a multi-channel 
transmission response as shown in the inset of Fig. 2(b). If the sampling function is periodic and 
shifted by ΔP in the center, a phase-shift is introduced in each channel. Specifically, a phase shift 
of Δϕ =2πΔP/P is generated in the -1st channel. Figure 2(b) shows the optical transmission 
spectrum of the -1st channel where ΔP=P/2 is selected to form a quarter-wave-shift, which has the 
same spectrum in the -1st channel as the conventional phase-shift grating in Fig. 2(a). Therefore, 
shifting the sampling function in SBG is equivalent to shifting the grating pattern in conventional 
phase-shift gratings. The advantage of this method is that the sampling period can be much larger 
than the grating period (P/Λ>100), making it easier lithographically to precisely control the 
phase-shift in SBG. In other words, the requirement of pattern placement accuracy in SBG is 
relaxed by more than a factor of 100. To demonstrate this method, we fabricated an SBG in SOI. 
The grating was patterned by interference lithography which has a good long-range spatial-phase 
coherence, and the sampling was patterned by low-cost optical-contact lithography. Figure 3 
shows SEM images of the fabricated device. Fabrication techniques and optical characterization of 
the device will be reported. 
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Fig. 1 (a) a conventional phase-shift grating; (b) an equivalent phase-shift 
grating using sampled Bragg grating 

 

 
Fig. 2 Simulated transmission spectrum of (a) a conventional quarter-wave 
phase-shift grating; (b) an equivalent quarter-wave phase-shift grating using 
SBG (inset: the entire spectrum of SBG) 
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Fig. 3 Scanning-electron micrographs of the fabricated SBG: (a) top-view of a 
section of the SBG; (b) a zoom-in view of the grating; (b) cross-sectional view 

of the facet of the SBG 
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