Parallel Fabrication of down to 3nm Gaps in Metallic Nano-Antennas

Yunchuan Kong and Yi Luo
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

Nano-antennas have drawn many attentions in recent years. To fabricate nano-antennas with small gaps ($\sim 10 \mathrm{~nm}$) is critical for achieving high field enhancement factors. Consistent fabrication of these nano-gaps allows the studies to be done in a systematic and reliable manner. In this letter, we introduce a novel approach for the preparation of large quantities of well controlled miniature gaps in metallic nano-antennas. It combines e-beam lithography, reactive ion etching, and ion beam milling techniques. With this method, arrays of nano-antennas with less than 5 nm wide gaps that have well defined shape and local geometry can routinely be fabricated. We will show that with fine-tuned processing conditions, very small gaps of between $\sim 3 \mathrm{~nm}$ wide can be made in Au and Pt nano-antennas. Potentially, novel structured plasmonic devices such as closely coupled arrays of metal nanofeatures with $\sim 5 \mathrm{~nm}$ slits can also be fabricated with minor modification of this method. In addition, the same process can be employed to fabricate small gaps in nano-electrodes for molecular electronics research.
a. Starting wafer- 50 nm thermal oxide on heavily doped Si (100) substrate.
b. Preparing Pt nanowires using e-beam lithography with PMMA followed by Pt evaporation and lift-off.
c. Depositing $\sim 20 \mathrm{~nm}$ thick silicon oxide with sputtering deposition.
d. Creating nano-trench on silicon oxide layer using e-beam lithography with PMMA followed by reactive ion etching.

e. Generating nano-gaps in Pt nanowires using neutralized argon ion milling.

Fig 1: Fabrication process flow for down to 3nm gaps in nano-antennas.

