Theory, Modeling, and Simulation of Line Edge Roughness in Diblock Copolymer Resists

August W. Bosse

Polymers Division, National Institute of Standards and Technology, Gaithersburg, MD 20899

Diblock copolymer thin films are being considered as potential lithographic masks for next-generation nanomanufacturing. However, in order for block copolymer (BCP) films to function as viable resists, fabrication scientists must have significant control over the long-range order and uniformity of the BCP mesophase.¹ Template-directed self-assembly (TDSA) appears to be an attractive method to control long-range order; however, TDSA methods do not guarantee uniformity of the mesophase domains. Thermal fluctuations in the BCP film can cause interfacial fluctuations that can significantly affect device function. Fabrication scientists utilizing TDSA-fabricated BCP resists are primarily concerned with fluctuation wavelengths on the order of and larger than the desired feature size¹ (*i.e.*, the critical dimension, the half-pitch, or, in our case, half of the mesophase interdomain spacing $L_0/2$) because LER/LWR on this length scale can adversely affect the shape, size, and placement of the fabricated pattern(s) and thus have a pronounced negative affect on device function. It remains unclear if intrinsic noise at this length scale will represent a limiting factor in the use of BCP resists.² Clearly, fabrication scientists need a complete understanding of the physics of long-wavelength interfacial fluctuations in BCP resists.

We review the various frameworks available for modeling BCP LER/LWR. We note that at and above the $L_0/2$ length scale, phenomenological phase-field models are an attractive alternative to traditional particle-based and field-theoretic BCP modeling frameworks. Accordingly, we use a polymer phase-field model to examine long-wavelength LER and LWR in an AB diblock copolymer melt. We find that the phase-field model is capable of capturing the essential features of LER and LWR in a two-dimensional AB diblock coplymer resist. We show that LER and LWR in our phase-field simulations depend monotonically on the A-B segregation strength (Fig. 1a) and the noise strength (Fig. 1b), and that the spectra of LER and LWR both exhibit a peak at k_0 (Fig. 1c-d)—the characteristic wavenunber of mesophase separation in diblock copolymers. For $k \leq k_0$, we show that the LER spectrum roughly scales like $k^{-1.6}$ (Fig. 1c). This scaling is consistent with recent scanning electron microscope (SEM) measurements of LER in a thin film poly(styrene-*b*-methyl methacrylate) melt.³ Finally, we demonstrate that an external pinning field—similar to the chemically templated substrates developed by Nealey and coworkers⁴—suppresses long-wavelength LER.

¹International Technology Roadmap for Semiconductors (ITRS), 2007 Edition, http://www.itrs.net/Links/2007ITRS/Home2007.htm, (2007).

²A. W. Bosse *et al.*, Soft Matter 5, 4266 (2009).

³G. E. Stein *et al.*, *Macrmolecules* **43**, 433 (2010).

⁴S. O. Kim *et al.*, *Nature* **424**, 411 (2003).

Figure 1: Plots of (a) $3\langle \sigma_h \rangle / L_0$ and $3\langle \sigma_w \rangle / L_0$ vs. τ for $\epsilon = 0.015$, and (b) $3\langle \sigma_h \rangle / L_0$ and $3\langle \sigma_w \rangle / L_0$ vs. ϵ for $\tau = 0.35$, where $3\langle \sigma_h \rangle$ and $3\langle \sigma_w \rangle$ are LER and LWR, respectively, τ is the "quench depth" (proportional to the A-B segregation strength), and ϵ is the noise strength. The error bars in (a) and (b) represent the standard deviation over a stochastic simulation run, and the lines in (a) and (b) are provided as a guide to the eye. We also present plots of (c) $\langle |\delta h(k_x)|^2 \rangle$ and (d) $\langle |\delta w(k_x)|^2 \rangle$ for $\epsilon = 0.015$ and $\tau = 0.35$, where $|\delta h(k_x)|^2$ and $|\delta w(k_x)|^2$ are the spectra of LER and LWR, respectively. The dotted lines in (c) and (d) correspond to $k_x = k_0 = 2\pi/L_0$ —the diblock copolymer characteristic wavenumber—and the solid line in (c) illustrates $k_x^{-1.6}$ scaling.