Scanning-neon-ion-beam lithography
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A commercially-available scanning-helium-ion miacope of high source
brightnesS has been modified for operation with neon gass Tieon system has
been evaluated for nano-machirfinigut not for resist-based lithography as has
been done with helium systefsThe neon system may enable a lithography
process with higher resolution than any scanninggb@ system to date. This
possibility is due to the combination of the higtghtness source and the
expected reduction of secondary-electron (SE) ragigéive to electrons or
helium ions. In addition, the expected increas8hnyield relative to electrons or
helium ions may lead to a lithography process Withh sensitivity. This high
sensitivity could allow critical doses below substrdamage thresholds.

We exposed test structures in 18-nm-thick hydraglsesquioxane (HSQ) resist
on bulk silicon to measure both (1) the criticatedo-print and (2) the spatial
distribution of deposited energy, or point-spreaaction (PSF). The neon system
and its internal pattern generator were used w2 BV beam, 0.3 pA current
and 0.3 ps minimum dwell time per step (1-nm steg)sfor the exposures. We
found the critical dose to be 130 ions/dot forasetl single-pixel dots, 26 ions/nm
for single-pixel lines, and 2 ions/rlor area structures. Figure 1(a-b) shows
critical-dose structures. Figure 1(c) shows dougstructures, which may be
used to determine the PSF (assuming radial symjnefigure 1(d) shows the
reciprocal of dot dose versus dot radius, i.e.raparametric and non-normalized
plot of the PSF. While we were not yet able to aehisub-10-nm feature
dimensions, this result may not reflect a fundamldimhitation of the neon
system. Further investigations will clarify the itsof this system.
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Figure 1: (a-c) Scanning electron micrographs (SEMs) of developtems in
18-nm-thick hydrogen silsesquioxane (HSQ) resissiboon, exposed by
scanning a 20 kV focused neon-ion be& Single-pixel lines using 26 ions/nm
at a pitch of 100 nm. 100 nm is greater than theeeted lateral scattering range
of neon at 20 kV(b) Single-pixel dots using 130 ions/dot at a pitci0® nm.
Fluctuation of dot dose is observal{i®. Doughnut structures using 2 ions/fim
and with specified inner diameters of 40 nm (tdp,|80 nm (top right), 20 nm
(bottom left), and 10 nm (bottom righ¢¥l) The reciprocal of dot dose versus dot
radius, estimated from SEMs of 6x6 dot arrays sinto (b).



