Adhesion and frictional forces measurement by scanning probe microscopy under pentafluoropropane gas atmosphere

Makoto Okada^{1, 4, 5}, Masayuki Iwasa², Yuichi Haruyama^{1, 4}, Kazuhiro Kanda^{1, 4}, Hiroshi Hiroshima^{3, 4}, and Shinji Matsui^{1, 4} ¹Graduate School of Science, Univ. of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo, 678-1205, Japan, ²SII NanoTechnology Inc., RBM Tsukiji Bldg. 2-15-5 Shintomi, Cyuo-ku, Tokyo, 104-0041, Japan, ³National Institute of Advanced Industrial Science and Technology (AIST), AIST East, 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan, ⁴JST -CREST, Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan, ⁵JSPS, 6 Ichibancho, Chiyoda-ku, Tokyo, 102-8471 Japan

Phone: +81-791-58-1432, E-mail address: m.okada@lasti.u-hyogo.ac.jp

It is known that the bubble defects in UV nanoimprinting is a one of the important issues. Hiroshima et al. reported that the bubble defects are eliminated by UV nanoimprinting under pentafluoropropane (PFP) gas atmosphere.¹⁾ In addition, the adhesion force between the mold and resin in demolding process reduce by this method.²⁾ To examine the PFP gas effect in nanometer-scale area, we measured the adhesion and frictional forces by scanning probe microscopy (SPM) under PFP gas atmosphere.

We used the E-sweep/NanoNavi Station (SII NanoTechnology Inc.), which is used to control the chamber vacuum, as the SPM system. We measured the adhesion and frictional forces by SPM under air, N_2 gas and PFP gas atmospheres. The measurement process was as follows; (1) The SPM chamber was evacuated until about 15 Pa by using a rotary pump. (2) The valve between the chamber and the rotary pump was closed after vacuuming and the PFP or N_2 gases then flows to the chamber. (3) The SPM measurement was carried out on the Si substrate.

A Si cantilever with a spring constant of 0.15 N/m was used. The contact force was about 10 nN. Figures 1(a)-1(c) show the force curves measured by SPM under air, N₂ gas, and PFP gas atmospheres, respectively. The adhesion forces measured under the air, N₂ gas, and PFP gas atmospheres were 1.5, 1.5, and 0.9 nN, respectively. The adhesion force measured under PFP gas atmosphere was lower than that under air and N₂ gas atmosphere. We also measured frictional curve by SPM under air and PFP gas atmosphere. In this measurement, we used a Si cantilever with SiO₂ particle (diameter is 1 μ m). Figures 2(a) and 2(b) show the frictional force measured in PFP gas atmosphere was about 3 times lower than that in air. These results indicate that the PFP gas is effective to reduce the adhesion and frictional forces in nanometer-scale area.

- 1) H. Hiroshima and M. Komuro: J. Vac. Sci. Technol. B 25 (2007) 2333
- 2) H. Hiroshima: J. Vac. Sci. Technol. B 27 (2009) 2862

Fig. 1 Force curves measured by SPM under (a) air, (b) N_2 gas, and

(c) PFP gas atmospheres.

Fig. 2 Frictional curves measured by SPM under (a) air and (b) PFP gas atmosphere.