Tip-Based Nanofabrication and Nanometrology of Functional Nanodevices using Heated Cantilever Arrays

W.P. King

Department of Mechanical Science and Engineering, Department of Materials Science and Engineering, Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana IL 61801 wpk@illinois.edu

This talk describes tip-based nanofabrication and nanometrology using heated cantilever probe tip arrays. When the heated tip of an atomic force microscope (AFM) cantilever is in contact with a substrate, the tip-substrate contact is a hotspot that can be smaller than 10 nm. We use this nanometer-scale hotspot for local thermal processing. In one approach, we can use the tip heating to control the deposition of polymers or nanoparticles from the tip onto a surface.^{1,2} In another approach, the heated tip can induce local temperature-activated chemical reactions.³

The heated tip can perform both writing and reading. Because each tip can be addressed individually, the writing and reading can be scaled to large arrays.⁴ In array operation, the reading resolution is near 1 nm. We demonstrate array writing and reading of sub-100 nm nanostructures with tip speed up to 1 mm / sec. The cantilever tips are made of nanocrystalline diamond, and have little or no wear at these speeds.⁵

Unlike many scanning probe lithography approaches that require specialty hardware, this nanolithography capability is enabled by our integration of heated AFM cantilevers in a commercial AFM system. We describe our hardware and software integration of the cantilever array, which could be adapted to any AFM.

- ² W. K. Lee, J. T. Robinson, D. Gunlycke, R. R. Stine, C. R. Tamanaha, W. P. King and P. E. Sheehan, Nano Letters **11** (12), 5461-5464 (2011).
- ³ Z. Q. Wei, D. B. Wang, S. Kim, S. Y. Kim, Y. K. Hu, M. K. Yakes, A. R. Laracuente, Z. T. Dai, S. R. Marder, C. Berger, W. P. King, W. A. de Heer, P. E. Sheehan and E. Riedo, Science **328** (5984), 1373-1376 (2010).
- ⁴ P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. During, B. Gotsmann, W. Haberle, M. A. Lantz, H. E. Rothuizen, R. Stutz and G. K. Binning, IEEE Transactions on Nanotechnology 1 (1), 39-55 (2002).
- ⁵ P. C. Fletcher, J. R. Felts, Z. T. Dai, T. D. Jacobs, H. J. Zeng, W. Lee, P. E. Sheehan, J. A. Carlisle, R. W. Carpick and W. P. King, Acs Nano **4** (6), 3338-3344 (2010).

¹ W. K. Lee, Z. T. Dai, W. P. King and P. E. Sheehan, Nano Letters **10** (1), 129-133 (2010).