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The capability to fabricate sub-20 nm nanostructures is now essential to develop 

new NEMS, electronic or biologic devices. So far, it has been demonstrated that some 
lithographic techniques like nanoimprint [1], e-beam [2] or EUV [3] can potentially 
achieve sub-20 nm structures. Nevertheless, they are not currently suitable for industry 
applications due to high defect density, cost, exposure time or resist problems. Other 
techniques like spacer patterning [4], resist trimming [5, 6] allow to reduce pattern 
resolution but in that case the process flow is rather complex. 

In this study, we demonstrate the possibility to obtain sub-10nm patterns on 8-
inch wafers by using materials which can be easily implemented on a device process flow 
without dramatically increasing the fabrication cost. For this purpose, we have used a 
bilayer stack composed of an amorphous carbon hard mask capped by a thin silicon oxide 
layer of about 20nm (Fig. 1). This technique consists first in transferring resist patterns 
into the oxide layer, then in opening the hard mask [7]. The carbon hard mask 
subsequently undergoes an anisotropic trim in order to reduce the initial resist pattern 
dimensions [8, 9] (Fig. 1 and 2-B), and transfer is finally carried out into the stack which 
is to be patterned (Fig. 3). 

The main advantage of using a capping layer is to reduce critical dimensions 
(CD) while preserving the initial pattern height: hence, the pattern aspect ratio is 
increased. Furthermore, in such configuration the role of resist patterns is limited to 
etching the thin oxide capping layer, which considerably reduces resist budget 
(approximately the thickness of the capping layer here) and contributes to suppress resist 
thickness limitations. 

In the presented example, resist patterns were performed by hybrid lithography 
(e-beam/deep UV) with a negative chemically amplified resist. E-beam exposures were 
carried out on a Leica VB6UHR 100KV from Vistec, optical lithography on a KrF 
ASML stepper (248 nm). The initial resist dimensions were 30 nm (Fig. 2-A). After 
carbon hard mask trimming optimisation (Fig. 2-B), 7 nm polysilicon/TiN gates were 
obtained (Fig. 3), which is a state-of-the-art result for a “low cost” patterning process. 
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Fig. 1: Process flow by using a capped carbon hard mask 
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Fig. 2: Top SEM view of initial resist patterns (A) and Cross sectional SEM view 

of capped amorphous carbon pattern (B) 
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Fig. 3: Tilted (A) and Cross sectional (B) SEM views of 7 nm transistor gates 


