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Light-induced electron emission can happen due to photoemission, photo-field-
emission, optical field-emission and thermionic emission. Multi-photon
photoemission®? is of particular interest as it enables electron emission using
photon energies below the cathode workfunction. The emitter temperature plays
an important role in photoemission and the relative weight of various multi-
photon phenomena.® Such effects are typically observed using the high
intensities delivered by pulsed lasers, which can also induce a noticeable rise in
lattice temperature or at least in the electronic temperature of the cathode.

Here, we report one- and two-photon photoemission from an array of millimeter-
long, vertically-aligned carbon nanotubes (a nanotube forest) using low-power,
continuous-wave laser. A ultra-violet laser beam (wavelength: 266 nm) is
focused on the side wall of the nanotube forest (Figure 1(a)) onto a spot of ~ 125
pm in diameter. The intensity is limited to a maximum of 500 W/cm?, orders of
magnitude below typical intensities used in pulsed-laser multi-photon
photoemission experiments on bulk emitters. We show that in various ranges of
laser power (corresponding to various intensities for a fixed spot size), different
mechanisms are dominant. At low intensities, electrons are emitted due to simple
one-photon photoemission. In this region, the electron emission current increases
linearly with laser intensity (Figure 1(b)). As the intensity gradually increases, a
two-photon photoemission process seems to dominate, as suggested by the fact
that the slope of the log-log plot of current vs. intensity is equal to 2 in this
region (Figure 1(b)), indicating a second-order process. The temperature of the
irradiated spot may be playing a key role here. We have previously shown that,
through a so-called Heat Trap effect, even a low-power laser beam can locally
heat a spot on the sidewall of a nanotube forest by thermally isolating the spot
from the surroundings, easily raising its temperature to hundreds or thousands of
degrees.” As the intensity is further increased, gradually a fully thermionic
process takes over (Figure 1(b), beyond the region with slope 2). Surprisingly,
we also observe that the laser polarization has little effect in the two-photon
photoemission region, while it has a significant effect as the power is increased
and thermionic emission dominates (Figure 2).
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Figure 1: (a) Schematic of the experimental configuration. The laser beam is s-
polarized (electric field parallel to the nanotubes’ axis) and focused on the side
wall of the nanotube forest onto a spot of ~ 125 um in diameter (drawing not to
scale). (b) Log-log plot of the photoemission current vs. laser intensity under
perpendicular incidence. Inset shows the current vs. laser power.
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Figure 2: Photoemission current as a function of laser power for different
polarizations of the laser beam. The angles of incidence for the s- and p-
polarized beams are ~ 0° and ~ 8° respectively, and both have the same plane of
incidence. In the case of the combination of s and p polarizations (violet), the
unpolarized beam has first been split into s and p halves using a polarizing
beamsplitter, which have then been combined again onto the same spot on the
forest side wall.



