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The Schottky Electron source (SE) has become the most used source in electron optical systems where 

high brightness and/or small energy spread are required.  A computer modeling program has been 

developed that allows the computation of important source parameters for the SE source such as the 

virtual source size (dv) and total energy distribution (TED).  A commercial charge density boundary 

element method program (CPO3D by Electron Optics Ltd.) was used to evaluate the source geometry.    

This program calculated the surface charge density and the electric field F(z) normal to the surface  

calculated which allowed trajectories of emitted electrons to be calculated along with the TED and dv. 

These calculations were performed both with and without coulomb interactions included.  The ratio of 

I’/J=K was also computed, where I’ is the axial current per unit solid angle and J is the axial current 

density.  This program allowed for distinction among the three major equilibrium faceted shapes, which 

have been reported previously1.  In some instances the Stage 0 end form was separated into a Stage 0-a 

or 0-b depending on whether the four side (110) planes intersect the rounded, central (100) plane2.  The 

axial value of field factor β=F/V  (where F and V are the applied field and extraction voltage respectively) 

was found to follow a power law dependence on K as the emitter inscribed radius varied from 200 to 

700 nm.  The latter relationship holds regardless of the end form as observed in Fig. 1 and allows for the 

accurate conversion of experimental I’ values to J. 

The computed values of the axial dv (with coulomb interactions) normalized by the intrinsic dv(int.) 

(without coulomb interactions) are shown in Fig. 2 for the same emitter data set given in Fig. 1 and for I’ 

values from 0.25 to 1.0 mA/sr.  A linear relationship with J is observed for dv/d(int.) independent of the 

stage end form.  Similarly the values of the full width of the TED curves containing 50% of the current 

(FW50) normalized by the FW50(int) values versus I’ are shown in Fig. 3.  In this case experimental 

values are shown which are supported by the computed values.  The data can be fit to a 2nd order 

polynomial with reasonable accuracy – again the relationship is not altered by the various end form 

stages and radii which vary from 300 to 800 nm.  It is interesting to note from Figs. 2 and 3 that at I’≈ 0.5 

mA/sr the coulomb interactions have increased dv over its intrinsic value by 15% whereas the FW50 

value has increased by 50% 

Another computer program using the experimental I’(V) data along with the Fig. 1 β(K) relationship 

calculates the emitter work function (φ) and β values.  With values of K, φ and F one can determine 

FW50(int) and dv(int) which along with the empirical relationships in Figs. 2 and 3 allows dv and FW50 

values  to be calculated for a given I’ value.  In addition, the reduced brightness (Br)
 3 can be determined 

from Br = 4I’/πdv
2 = 1.44J/πkT.  However it should be pointed out that, in contrast to the FW50 values, dv 

has a z dependence so for electron optical applications it matters where the beam defining aperture is 

located.  In this study the measuring plane for dv was located 3 mm downstream from the emitter.       



 
Fig. 1 The calculated axial values of β vs. K can be fitted with a power law relationship. 

 

Fig. 2 The computer calculated dv (with coulomb interactions) normalized by the intrinsic dv(int.) (no 

coulomb interactions) shows a linear relationship with J. 

 
Fig. 3 The experimental FW50 (with coulomb interactions) normalized by the intrinsic FW50(int.) (no 

coulomb interactions) can be fit with a second order polynomial dependence on  J. 
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β= 1.130E+08(K)-8.260E-01

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

3.5E+05

4.0E+05

0 2,000 4,000 6,000

β
(m

-1
 )

K (nm)

Stage 1
Stage 2
Stage 0-a

dv /dv(int.) = 5.447E-10J + 1.01
R² = 0.939

0.0

0.5

1.0

1.5

2.0

0.0E+00 5.0E+08 1.0E+09 1.5E+09

d
v/

d
v(

in
t.

)

J (A/m2 )

Stage 1
Stage 2
Stage 0-a
Stage 0-b

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0

FW
5

0
/F

W
5

0
(i

n
t.

)

I' (mA/sr)

Stage 0

Stages 1 & 2

Poly. (Stage 0)

FW50/FW50(int.) = -0.391I'2+1.056I'+1.079


