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Atomically precise control of lateral dimensions far beyond the limit of conventional lithography is 
necessary for nanoelectronic circuit manufacturing. Today, this can only be achieved by direct-
write patterning of desorption resists with a scanning tunneling microscope (STM). The approach 
has been particularly successful in hydrogen depassivation lithography, where the STM selectively 
removes hydrogen atoms from a passivated silicon surface, creating a pattern of chemically active 
sites that guides template-growth of chemical vapor deposited metals, insulators, semiconductors, 
and dopants.1 Scalability of STM lithography is very limited, however, as the single-tip removal rate 
is only about 50 atoms /second. The scaling of desorption lithography to nanoelectronic systems of 
IC complexity requires bridging the roadblock of ultra-low STM throughput. Our goal is to develop a 
high-throughput, parallel exposure technique for atomically-precise patterning of desorption resists.   
Our approach is based on neutral atom proximity lithography where a beam of neutral atoms 
illuminates a stencil mask and transmitted beamlets transfer the mask pattern to resist on a 
substrate. An example with promising energetics is the formation of semiconducting graphene 
strips by selectively removing fluorine atoms from a fluorinated graphene sheet with a low energy 
(~60 eV) Xe beam. Atomistic simulations2 show a sharp threshold in this energy range below which 
no carbon atoms will be removed from the graphene backbone. Still, the maximum energy 
transferred to the heavier F-atoms is more than 15 times larger than the bond dissociation energies 
of F on graphene (0.25-2.5 eV).3 Below about 200 eV, no secondary electrons will be produced 
that could blur the image.  As shown in Fig. 1a, there is significant diffraction for a 4 nm wide mask 
opening, even for a 100 nm proximity gap. Fig. 1 b,c,d shows the results of a Monte-Carlo 
simulation based on ref. 1 and assuming that the cross-section for removing fluorine atoms is 5 x 
10-16 cm2.  Equivalently, the diameter of the fluorine atom would appear to be 1.25 Å, 
approximately equal to the interatomic distance in graphene. Note the remarkably low image noise 
for Xe densities a few times larger than the C-atom density.  

Our paper will report virtual source size, brightness, and energy spread of a xenon atom source 
operating the voltage range 50-100 eV.  The experimental apparatus is based on a 30 keV helium 
ion source, fig. 2,  with source size and brightness of 82+10 µm [2σ] and 1,068 A/cm2-sr. 4  
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Figure 2.  Cross-sectional diagram of the 30 keV neutral He printer that is being modified in this study to 
produce 50-100 eV Xe atoms. 
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Figure 1. Diffraction pattern for 60 eV xenon atoms (a) and Monte-Carlo simulations of graphene 
nanostrips for aerial doses of 1X (b), 3X (c), and (d) 5X the carbon atom density. Carbon atoms are blue; 
fluorine atoms are red. 


