A lab-on-a-chip with 30 nm nanochannels and plasmonic bowtie nanoantenna

I. Fernandez-Cuesta, C.Carbone, S.Dhuey, A.Taber, D.Gargas, PJ.Schuck, S.Cabrini

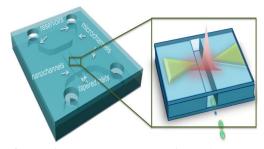
The Molecular Foundry, Lawrence Berkeley Lab, Berkeley, CA e-mail: ifernandez-cuesta@lbl.gov

Plasmonic bowtie nanoantennae are able to nano-focus and enhance the light by several orders of magnitude into a very small spot: the sub-50 nm gap. This hot spot is ultra-sensitive, what can be exploited for single particle (bio)sensing. But there is a major challenge: how to place the target element right at the hot spot.

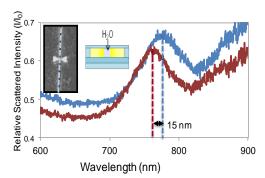
Here, we have integrated a nanochannel crossing the antenna gap (with exactly its same dimensions and perfectly aligned to it), what allows to deliver the analyte right into the sensitive area in a controlled fashion (Figure 1). The nanochannel is connected to a complete fluidic system, as shown in Figure 1. This represents a new type of super-sensitive (bio)sensor, with label free singlemolecule real time detection capabilities.

We have developed a wafer-scale fabrication process, based on nanoimprint lighotraphy (NIL), for the device fabrication¹. The silicon stamp is fabricated by electron beam lithography, photolithography and reactive ion etching to pattern the micro and nanochannels; gray-scale electron beam lithography plus thermal reflow is used to pattern 3D tapered inlets^{2,3}. A negative replica of the stamp is made in Ormostamp (a hybrid polymer commercially available from microresist technology) by UV nanoimprint lithography. Finally, the all-transparent polymeric device is made by direct UV-NIL using the negative replica to imprint Ormostamp. The plasmonic nano-antennae are defined by shadow evaporation of a sacrificial layer of chromium, a normal evaporation of gold, and lift-off using a chromium etchant. Images of the device are shown in Figure 2.

Two-photon photoluminescence measurements confirm the light focusing into the gap with an intensity enhancement as high as $\alpha^2 = 10^4$. Preliminary sensing results show a dark field scattering resonance in the interval of 650-750 nm and a shift of ~15 nm when the channel is filled with water (Figure 3). Simulations show a good agreement on this result (Figure 4).


The nanochannels have been used to stretch λ -DNA by electrophoresis. Figure 5 shows a time sequence of a molecule passing from the microchannel on the left (t=0 s) entering the tapered structures and stretched in the nanochannel (t = 20-60 ms) and finally getting into the right microchannel (t = 80-100 ms). Figure 6 shows detail of the intensity profiles and lengths of single molecules stretched into nanochannels of different cross sections: 27 nm x30 nm, 80 nm x 30 nm, 120 x 30 nm.

¹ I. Fernandez-Cuesta et. al., J. Vac. Sci. Technol. B 29, 06F801 (2011)


² I. Fernandez-Cuesta et. al., NNT 2012

³ A. Schleunitz et. al., J. Vac. Sci. Technol. B 29, 06FC01 (2011)

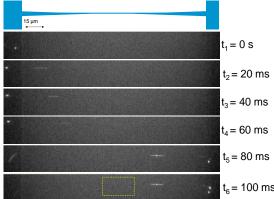

Figures:

Figure 1 *Device concept*. A full micro/nano fluidic system is integrated with plasmonic bowtie nanoantenna. This allows delivering the target element into the plasmonic hot spot.

Figure 3. Dark field spectroscopy sensitivity. The resonant signal of the antenna facing an emtpy channel shifts 15 nm when the channel is filled with water. A sensitivity of 50 nm per refractive index unit has been calculated.

nanochannels. The nanochannel area is marked

with a yellow dashed square, and stretching details

shown in Figure 6.

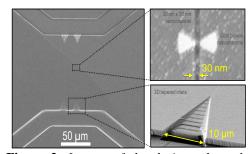
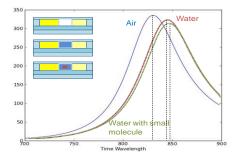
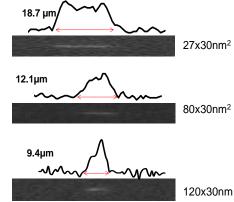




Figure 2. *Images of the device*, where the microchannels, nanochannels, tapered inlets and gold bowtie nanoantenna aligned and level with the channel can be seen.

Figure 4. Sensitivity simulations. A shift of 15 nm for a nanochannel filled with air or water is calculated. A 5 nm shift is predicted for a small molecule crossing the antenna gap $(10x10x10 \text{ nm}^3 \text{ cube with a n}=1.5)$

Figure 6. *DNA stretching in nanochannels.* Intensity images and profiles of single DNA molecules stretched in nanochannels with different cross-sections: 27 nm x30 nm, 80 nm x 30 nm, 120 x 30 nm, from top to bottom.