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Topological Insulators (TIs) are a group of emerging materials that exhibit unusual electronic 
properties.1, 2 The ballistic transport of carriers via these conductive surface states can be 
topologically protected against the scattering by nonmagnetic defects.1, 2 Therefore, TIs could be 
implemented to make low-dissipation electronic channels for applications in spintronics, 
thermoelectrics, and magnetoelectronics.2 One of the most critical challenges for the practical 
applications of TI is the residual bulk conductivity that can seriously degenerate the contribution 
of the surface states.2 To suppress the bulk conductivity, a great deal of effort has been invested 
to create and characterize topological insulator nanoribbons (TNRs) that have been demonstrated 
to be able to manifest the surface conduction states due to their large surface-to-volume ratio and 
have significant potentials to be integrated into state-of-the-art device configurations.3-5 The 
nanoparticle (NP) – catalyzed vapor-liquid-solid (VLS) process has been widely employed as a 
low-cost approach to create TNRs for the purpose of fundamental research.3, 4, 6, 7 However, 
additional research is needed to significantly improve the yield of sub-100 nm wide TNRs and 
also obtain a high uniformity of the ribbon widths. 

In this work, we present a nanostructure-mediated growth process specifically for producing 
bismuth selenide (Bi2Se3) TNRs with a high yield. In this process, TI nanostructures are grown 
on nanograting templates by using the NP-catalyzed VLS mechanism. As demonstrated in Fig. 1, 
in comparison with the growth processes on flat (Fig. 1a) and randomly rough (Fig. 1b) 
substrates, such a nanograting-mediated growth process (Fig. 1c) produces TNRs with a 
dramatically higher yield (~15,000/mm2), a narrower average ribbon width (wavg < 60 nm), and a 
higher uniformity in width (σ < 30 nm); effectively suppresses the formation of other unwanted 
morphologies; and also results in the axial growth of nanoribbons along specific in-plane 
directions relative to pre-structured gratings (Fig. 2). The TEM characterization shows that the 
produced nanoribbons are single crystals with atomically smooth edges (Fig. 3). Finally, 
Aharonov–Borm (AB) oscillations4 in the magnetoresistance were observed and clearly 
demonstrated the coherent transport of electrons through topological surface states of Bi2Se3 
nanoribbons (Fig. 4). 

This work could serve as an important foundation for nanomanufacturing topological 
insulator nanoribbons with controllable feature size, large-area uniformity and ordering suitable 
for future applications in low-dissipation nanoelectronics and magnetoelectronic sensors. 
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