An investigation into the role of self-assembled monolayers of silane in UV nano-imprint lithography

<u>Alborz Amirsadeghi¹</u>, Jae Jong Lee², Sunggook Park^{1,*} ¹ Mechanical Engineering Department and Center of Bio-Modular and Multiscale Systems, Louisiana State University, USA ² Nano-Mechanical Systems Research Division, Korea Institute of Machinery and Materials, 104 Sinseongno, Yuseong-Gu, Daejeon 305-343, Korea

Abstract:

Progress of UV nano-imprint lithography has been hampered by the generation of defects upon de-bonding of the cured resist from the stamp (so called de-molding stage). Self-assembled monolayers of silane molecule have been widely used to reduce the de-bonding energy which in turn decreases the probability of defect generation. In this work we conducted a comprehensive study to investigate the role of silane molecules in reducing the de-bond energy. Two different fluorinated silane molecules with identical head groups but hydrophobic tails of different lengths coated on silicon wafers were investigated the results were compared to untreated silicon. F₁₃-TCS denotes silane with a longer tail and F₃-TCS has a shorter tail lenght. Total surface energy, its dispersed and polar components $(\sigma_s, \sigma_s^p, \sigma_s^p)$ along with receding, advancing and contact angle hysteresis (CAH) for bare silicon (Si/SiO₂) and silicon after treatments with two different silanes are presented in Table 1. Silane with a longer chain (F_{13} -TCS) reduces the surface tension from 64.15 (for bare silicon) to 11.50 mN/m whereas F₃-TCS reduces the surface tension only to 15.47 mN/m. Lateral force variations versus various normal loads applied measured by atomic force microscopy are shown in Figure 1. From these measurements we found that F_{13} -TCS silane reduces the friction coefficient from 0.18 (for SiO₂ on SiO_2) to 0.11 whereas F_3 -TCS is less effective and reduces the friction coefficient to only 0.16.

Surface energy and friction coefficient of each surface were correlated with the de-bonding energis on a flat as well as stamps with vertical sidewalls shown in Figure 2. On a flat surface (blank stamp) the silane with a longer chain length (F_{13} -TCS) reduced the de-bonding energy by ~0.32% while silane with shorter chain length (F_3 -TCS) reduced the de-bonding energy by only ~18%. However, when stamps with grating structures are used, silanation of the surface plays a more significant role in decreasing the de-bonding energy. Silanation of the grating silicon stamps with F_{13} -TCS decreased the de-bonding energy by ~0.55% whereas the stamps coated with F_3 -TCS and F_{13} -TCS are compared together there is a ~0.17% more reduction in de-bonding energy on a flat surface when F_{13} -TCS is used. This reduction becomes larger and reaches almost 0.27% for grating stamps. The excess decrease in the de-bonding energy on grating stamps is associated with the decrease in the friction coefficient on the sidewalls of the stamp (besides surface energy) when the surface is coated with silane.

	ø_s (mN/m)	σ _S (mN/m)	σ ^D (mN/m)	Receding CA	Advancing CA	САН
Bare silicon	64.15	36.76	27.39	N.A	N.A	N.A
F ₃ -TCS	15.47	2.25	13.22	110.1	64.7	45.4
F ₁₃ -TCS	11.50	1.22	10.28	122.0	77.0	45.0

Table 1 Total, dispersed and polar Surface energies (σ_s , σ_s^p , σ_s^D) along with receding, advancing and contact angle hysteresis (CAH) for bare silicon (Si/SiO₂) and silicon after silane treatments.

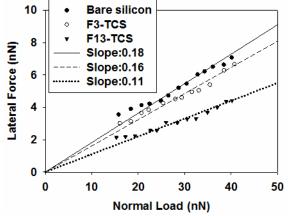
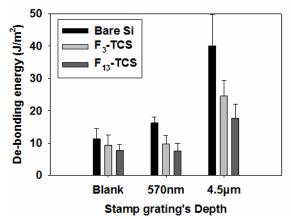



Figure 1: Friction vs. normal force curves measured by LFM for bare silicon and silicon treated with silanes. Friction coefficients are determined from the slope of these curves.

Figure 2: De-bonding energy of a UV resist imprinted on bare silicon and silicon treated with different silanes. De-bonding energy was measured on a blank (non-structured) stamp as well as 570nm and 4.5 μ m deep grating stamps with identical periods of 15 μ m and grating widths of 5 μ m.