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Nanomechanical resonator is a key compornent of nanoelectromechanical 
systems because the nanomechanical resonator enables us to detect various small 
physical quantities using vibration1,2. And, because the lightweight structure is 
useful in order to achieve the high sensitive devices, the graphene attracts 
attention as a material of a resonant device. And also, the high quality (Q) factor 
is required for the high sensitivity. Therefore, Q factor improvement of a 
graphene mechanical resonator had been researching. Thus far, it was found that 
the applying of the tensile stress was effective method in order to improve the Q 
factor3. Tensile stress induced the decrease in the thermoelastic damping during 
vibration. In this study, a more powerful method using a tensile stress was 
studied for Q factor improvement of the graphene resonator. 
 
Figure 1 shows a fabrication process of a strained-graphene resonator. In this 
study, the bending of clamps was used in order to apply the tensile stress to the 
graphene resonator, as shown in Fig. 2(a). The bending of clamps was induced 
by the thermal shrinkage of hydrogen silsesquioxane (HSQ) resist under the 
Au/Cr layer. Figure 1(b) shows a scanning electron microscope (SEM) image of 
the graphene mechanical resonator fabricated in this study. Length and width 
were 4.7 µm and 200 nm, respectively. And, graphene resonators with bended 
clamps as shown in Figs 2(c) and 2(d) were obtained by the annealing treatment. 
 
Resonant characteristics were measured under the vacuum of approximately 5 X 10-3 
Pa by using an optical heterodyne vibrometer (MLD-230V-100, NEOARK Corp.), as 
shown in Fig. 3(a). Vibration of a graphene resonator was excited by photothermal 
excitation using semiconductor laser with a wavelength of 408 nm. And, vibration was 
measured by using He-Ne laser with a wavelength of 632.8 nm. Figure 3(b) shows 
measurement results of resonant characteristics before and after annealing treatment. 
As a result, resonant frequencies and Q factors were increased with the increase in the 
annealing temperature. Maximum Q factor obtained in this experiment was 10411, as 
shown in Figs. 3(b) and 3(c). Tensile stress was 886.3 MPa. This Q factor at room 
temperature was quite high as compared with what was reported in previous work. 
These indicate that the clamp-bending method was useful in order to obtain the 
strained-graphene resonator with the high Q factor. 
 
1 S. Etaki, et. al., Nat. Phys. 4, 785 (2008). 
2 K. L. Ekinci, and M. L. Roukes, Rev. Sci. Instrum. 76, 061101 (2005). 
3 Y. Oshidari, et. al.: Appl. Phys. Express 5,  117201 (2012). 



 

Figure 3: Evaluation of vibration characteristics: 
(a) Schematic of the experimental setup, (b) Resonant frequency and Q factor 
before and after annealing treatment, (c) Vibration spectrum of a strained-
graphene resonator with a maximum Q factor 
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Figure 2: Graphene mechanical resonator strained by the clamp-bending: 
(a) A mechanism of the tensile stress applying to a graphene resonator, and 
SEM images of graphene resonators (b) before and after annealing treatment 
(c) at 400 deg. C for 3 h and (d) at 800 deg. C for 2 h. 
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Figure 1: Fabrication process of a graphene resonator strained by the clamp 
bending induced by the annealing treatment 
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