Hydrogen-beam induced deposition of platinum and tungsten microstructures

<u>A. Botman</u>, S. J. Randolph FEI, 5350 NE Dawson Creek Drive, Hillsboro OR 97124

J. J. L. Mulders FEI, Achtseweg Noord 5, 5651 GG Eindhoven, The Netherlands,

Focused ion beam-induced deposition (IBID) is a popular technique for rapid, direct-write nano- and micro-fabrication. To date most commercial FIB systems are equipped with gallium liquid metal ion sources. The choice of Ga^+ as the ion beam allows substrate sputtering at high current as well as material deposition at low currents via IBID. However, Ga^+ based micromachining suffers from the inherent limitation of Ga implantation into the deposited structure, which may be undesirable for some applications.

FEI recently introduced a FIB system utilizing an inductively coupled plasma source (ICPS).¹ These new tools allow the use of different ions as the primary beam.^{2,3} We have modified an FEI Vion system to run with a plasma consisting of H₂ gas, producing a focused primary beam of $H^+/H_2^+/H_3^+$ at the sample.

In this contribution we report on the use of the focused hydrogen primary beam for deposition of platinum and tungsten microstructures from MeCpPtMe₃ and $W(CO)_6$ precursor gases respectively. Examples of typical deposition morphologies will be presented as well as cross-sectional and compositional analysis. Strategies for obtaining microstructures with highly pure platinum using the focused hydrogen beam will be discussed.

¹ www.fei.com/products/fib/vion

² M. M. Taklo, A. Klumpp, P. Ramm, L. Kwakman, and G. Franz, Microsc. Anal. 114, 9 (2011)

³ C. E. Otis, A. Graupera, D. Laur, S. Zhang, S. Kellogg, and G. Schwind, J. Vac. Sci. Technol., B 30, 06F604 (2012)

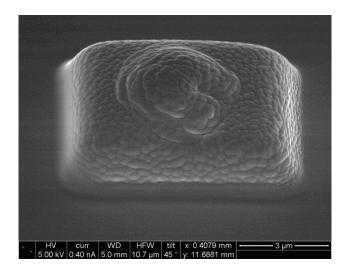


Figure 1: Platinum deposition performed at 30kV, 2.5nA with $H^+/H_2^+/H_3^+$.

Figure 2: Set of platinum depositions performed at 30kV with $H^+/H_2^+/H_3^+$.