Growth of functional magnetic and superconducting materials by Focused Beam Induced Deposition techniques

J. M. De Teresa

Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain

and

Laboratorio de Microscopias Avanzadas (LMA) and Condensed Matter Physics Department, Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain deteresa@unizar.es

Focused Electron Beam Induced Deposition (FEBID) and Focused Ion Beam Induced Deposition (FIBID) techniques are single-step high-resolution lithography techniques capable of growth of functional nanomaterials on arbitrary substrates.¹ Our group has addressed the growth of magnetic and superconducting nanostructures using FEBID and FIBID. The use of $Co_2(CO)_8$ and Fe₂(CO)₉ precursors has allowed us to grow a large variety of magnetic nanostructures with high magnetic metal content (80-100%).² In particular, we single out the growth of two-dimensional ultra-narrow magnetic nanowires and Hall probes³ (shown in Figure 1), the growth of three-dimensional magnetic nanowires⁴ (shown in Figure 2) and the growth of magnetic nanostructures on cantilevers (shown in Figure 3).^{5,6} Such functional magnetic deposits can be applicable in memories, logic and sensors.² Through tuning of the growth parameters, we have grown thickness-modulated magnetic deposits using the abovementioned precursors as well as thickness-modulated superconducting deposits using the $W(CO)_6$ precursor. As shown in Figure 4, this approach has been used to create highly-dense arrays of isolated individual magnetic nanowires $(2,5 \times 10^7 \text{ nanowires/cm})$.⁷ The superconducting nanostructures with thickness modulation have been designed to produce one-dimensional pinning potential for the vortex lattice occurring when a perpendicular magnetic field is applied.⁸ On the other hand, narrow (50 nm) W-based superconducting nanowires exhibit remarkable finite-size effects.⁹ Recent results on these topics (still unpublished) will be additionally described.

¹ Book "Nanofabrication using focused ion and electron beams: principles and applications (2012), Editors: P. E. Russell, I. Utke, S. Moshkalev, Oxford University Press

² J.M. De Teresa and A. Fernández-Pacheco, Appl. Phys. A **117**, 1645 (2014).

³L. Serrano et al., ACS Nano **5**, 7781 (2011).

⁴ A. Fernández-Pacheco et al., Sci. Rep. **3**, 1492 (2013).

⁵ H. Lavenant et al., Nanofabrication **1**, 65 (2014).

⁶G. Tosolini et al., Nanofabrication **1**, 80 (2014).

⁷ J. M. De Teresa, R. Córdoba, ACS Nano **8**, 3788 (2014).

⁸ I. Guillamón et al., Nature Physics **10**, 851 (2014).

⁹ R. Córdoba et al., Nature Communications **4**, 1437 (2013).

Figure 1. Examples of two-dimensional ultra-narrow magnetic nanostructures grown by FEBID. *Left*: Cobalt nanowire. *Right*: Cobalt Hall-cross probe.

Figure 2. Examples of three-dimensional cobalt nanowires grown by FEBID: *Left.* Two-loop spiral nanowire. *Middle*: High aspect-ratio nanowire forming 45° with the substrate surface. *Right*: Nanowire with a 90° turning point.

Figure 3. Examples of cobalt nanostructures grown by FEBID on unconventional surfaces: *Left.* Cobalt nanosphere on the tip of an ultra-soft cantilever for Ferromagnetic Resonance Force Microscopy studies. *Middle*: Cobalt nanowire on the tip of a piezoresistive cantilever. *Right*: Nanowire on a tip for Magnetic Scanning Probe Microscopy applications.

Figure 4. Cross-sectional images of functional magnetic and superconducting materials with thickness modulation. *Left.* Arrays of closely-spaced magnetic cobalt nanowires grown by FEBID. *Middle*: Arrays of isolated cobalt nanowires obtained from the previous thickness-modulated deposits after Ar^+ milling. *Right*: W-based superconducting nanostructures with thickness modulation for studies of nano-superconductivity.