Fabrication of Transition Metal Dichalcogenide Photovoltaic Devices Using Surface-Charge Transfer (SCT) Doping Mechanism

Sungjin Wi, Mikai Chen, Hongsuk Nam and Xiaogan Liang^{*} Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109

Emerging atomically layered transition metal dichalcogenides (TMDCs, *e.g.*, WSe₂, WS₂, and MoS₂) exhibit ultra-high light absorption coefficients over a broad range of wavelengths (NUV-vis-IR) and have been envisioned to enable next-generation ultrathin flexible photovoltaic (PV) devices with excellent performance and low cost.^[1-3] In order to fully leverage the superior photonic properties of TMDCs for practical photovoltaic applications, new doping (or charge transfer) techniques are needed for fabricating TMDC-based PV devices with reliable built-in junctions that can efficiently separate photo-generated e-h pairs. Our group previously reported MoS₂ PV devices made by using plasma-assisted implantation.^[4] However, this plasma doping process significantly degrades the transport properties of TMDC materials. Chen *et al.* recently reported the fabrication of TMDC PV devices based on WSe₂/MoS₂ heterojunctions that can serve as p-n diode junctions for facilitating the charge transfer.^[5] However, the fabrication of such vertically-stacked TMDC bilayer heterostructures over large areas is still a challenge. Therefore, new doping (or charge transfer) methods, which do not need detrimental implantation processes and are compatible to large-area nanomanufacturing processes, are strongly demanded.

Here, we report a new upscalable doping technique capable of forming permanently stable built-in p-n junctions in pristine WSe₂ photoactive layers and resulting in excellent PV performance. This new doping method employs regular deposition processes to coat WSe₂ surfaces with thin-film materials with deterministic work functions (Φ), which can induce reliable surface-charge transfer (SCT) processes at WSe₂/thin-film material interfaces and result in p-n junctions with deterministic band alignments. Such a highly relevant correlation between work functions of chosen thin-film materials and resultant band alignments of p-n junctions is attributed to the 2-D nature of TMDC surfaces that have an extremely low density of interfacial charge traps and can effectively suppress the Fermi-level-pinning effect.

Fig. 1a illustrates a WSe₂ PV device consisting of a vertically stacked high- Φ electrode/fewlayer WSe₂/low- Φ electrode/ITO structure. **Fig. 1b** shows the schematic band diagram of this WSe₂ PV device. At the thermodynamically equilibrium state, the SCT processes at hig- Φ electrode/WSe₂ and WSe₂/low- Φ electrode interfaces can induce p- and n-doping in the WSe₂ photoactive region, respectively, and form a p-n junction. **Fig. 2** displays photovoltaic characteristics of a set of our WSe₂ PV devices with (a) no low- Φ electrode; (b) $\Phi_L = 4.26 \text{ eV}$; (c) $\Phi_L = 4.30 \text{ eV}$; (d) $\Phi_L = 3.63 \text{ eV}$. All devices have the same high- Φ electrode (*i.e.*, Au, $\Phi_H = 5.1$ eV). The measurement was under 532 nm laser illumination (P = 283 mW/cm²). Fig. 2 shows that Φ_L values can greatly affect the performance of WSe₂ PV devices. The smallest Φ_L value (*i.e.*, 3.63 eV) results in the best PV performance, in terms of V_{oc}=0.37V, I_{sc}=1.2µA (J_{sc}=105 mA/cm²), FF=0.50, and PCE=6.9% under 532 nm laser illumination (P = 283 mW/cm²).

This work provides important scientific insights for enhancing the PV responses of TMDCs. The presented SCT-based doping processes can potentially enable the large-manufacturing of TMDC-based ultrathin-film PV cells.

[1] K. F. Mak, C. Lee, J. Hone and T. F. Heinz, Physical Review Letters, 105, 136805/1-4 (2010)

[2] G. Eda and S. A. Maier, ACS Nano, 7, 5660-5665 (2013)

[3] L. Britnell, R. M. Ribeiro, A Eckmann and A. H. C. Neto, Science, 340, 1311-1314 (2013)

[4] S. Wi, H. Kim, M. Chen, H. Nam, L. J. Guo, E. Meyhofer, and X. Liang, ACS Nano, 8, 5270, (2014).

[5] R. Cheng, et al., Nano Lett. 14, 5590-5597 (2014).

Fig. 1 (a) Illustration of a WSe₂ photovoltaic (PV) device consisting of a vertically stacked high Φ electrode/WSe₂/low Φ electrode/ITO structure; (b) Schematic band diagram of this PV device.

Fig. 2 Photovoltaic characteristics of WSe₂ PV devices with (a) no low- Φ electrode; (b) Φ_L = 4.26 eV; (c) Φ_L = 4.30 eV; (d) Φ_L = 3.63 eV. All devices have a high- Φ electrode (*i.e.*, Au, Φ_H = 5.1 eV). The measurement was under 532 nm laser illumination (P = 283 mW/cm²).