Modeling of Local Dielectric Charging-up during SEM Observation

Zh. H. Cheng, H. Koyama, Y. Kimura, and H. Shinada Central Research Lab., Hitachi, Ltd., 1-280 Higashi-koigakubo, Kokubunji-shi, 185-8601, Japan zhaohui.cheng.cz@hitachi.com

O. Komuro

Hitachi High Technologies America, Inc., Semiconductor Metrology Division, 2900 NW 229th Avenue, Suite 200, Hillsboro, OR 97124

It is known that during SEM observation, the electron irradiation on dielectrics results in charging-up at the dielectrics. The accumulated charge results in not only distortion, but also contrast of SEM images [2-3]. In this study, authors propose an analytical model and derive the intrinsic parameters that govern the collecting efficiency, which provides a convenient way to suppress the variation in image contrast within the field of view during SEM observation.

The experimental setup is based on a CD-SEM (S-9380, Hitachi High-Technologies Corporation) modified with variable scanning speed capability and corresponding image-acquisition system. The current of secondary electrons collected from sample surface of dielectrics during single-line scanning of the primary electron beam, varied in probe current I_p and scan speed v, was deduced from the corresponding SEM images. A concept named "scanning-line-density" λ_{in} , the number of incident electrons per unit scan distance during a single-line scanning, is proposed. Besides, the collecting efficiency Y_s quoted in the following is defined as the ratio of the current I_c of collected SEs and BSEs to I_p . Experiments showed that Y_s obtained from flat SiO₂ layer decreased sharply at the initial stage of a single-line scanning and leveled out at a distance of around 100 nm from the start position of the line scan. Y_s at steady state decreases monotonously with increment of λ_{in} and settled to 1 at λ_{in} greater than 5.7 electrons/nm, while it increases up to 5.3 at λ_{in} of 0.057 electrons/nm. Figure 1 indicates that during a single-line scanning, the intrinsic parameter that controls Y_s is λ_{in} . We propose a macroscopic model for the analytical simulation of evolution of potential V_s at an irradiated position on a sample surface, the potential barrier V_B over the position and I_c during single-line scanning. Change in Y_s , together with calculated V_s and V_B , during single-line scanning with λ_{in} of 3.4 electrons/nm is summarized in Fig. 2. Y_s decreased to 45% of its initial magnitude at steady state. Calculation reproduced the trend well. Our model indicated that it resulted from the building-up of charge and V_B , which pulled back more SEs to the sample surface at the subsequent irradiation positions. Variation in Y_s during single-line scanning can be suppressed by decreasing λ_{in} . The brightness profile obtained at a single-line scanning with λ_{in} of 0.17 electrons/nm is plotted in Fig. 3. Decrease in Y_s was suppressed to 6%.

In conclusion, λ_{in} is an effective parameter in controlling Y_s during SEM observation of dielectrics, which is very important for keeping uniformity in image contrast during SEM observation.

REFERENCES

[1] J.J. Hwu and D.C. Joy, Scanning 21 (1991).

[2] Fujioka H, Nakamae K, and Ura K, Core model for potential distribution on Insulator surfaces in the scanning electron microscope, Xlth ICEM, Kyoto, pp. 643(1986).

[3] C. Le Gressus, F. Valin, M. Gautier, J.P. Draud, J. Cazaux, and H. Okuzumi, Scanning Vol. 12, 203-210 (1990).

Fig.1 Dependence of collecting efficiency Y_s of SEs and BSEs on scanning line density (λ_{in}).

Fig.2 Decrease in Y_s during single-line scanning with λ_{in} of 3.4 electrons/nm. Charge building-up resulted to increment in V_B , which pulled more SEs back to sample surface.

Fig.3 Change in Y_s during single-line scanning with λ_{in} of 0.17 electrons/nm. Weaker V_B at individual irradiation position contributes to higher Y_s and less variation in Y_s during the scanning.