Suspended two-dimensional $MoS₂$ transistor

R. Zhang¹, A. Bunting¹, V. Koutsos², R. Cheung¹

Scottish Microelectronics Centre¹ , Institute for Materials and Processes² The University of Edinburgh, King's Buildings, Edinburgh, EH9 3FF, United Kingdom rui.zhang@ed.ac.uk

Two-dimensional (2D) materials attract increasing attention, due to their ultralow weight, high mobility, extraordinary mechanical properties and flexibility [1]. An intrinsic bandgap within the 2D semiconducting transition metal dichalcogenides (TMDs) [2,3], such as $MoS₂$ and $WSe₂$, makes them more promising in the electronic and optoelectronic devices applications. However, the trapped charges at the interface of 2D materials/substrates can screen the gate field and give rise to the Coulomb scattering [4], which negatively affect the carrier transport in the 2D materials. Thus, understanding of the intrinsic characteristics of MoS² field-effect transistors (FETs) without the effect of underlying substrate is essential [5].

A back gated $MoS₂ FET$ has been fabricated on $Si/SiO₂$ substrate, as shown in Figure 1(a). After the 2D MoS₂ has been exfoliated and transferred onto the substrate, the 2D MoS₂ channel has been patterned with optical lithography and CF⁴ plasma etching. The metal contact regions have been defined on negative photoresist with the help of alignments marks in $SiO₂$ [6]. Then Ti/Al metal stacks have been deposited by E-beam evaporation and lifted off. The device has been annealed in forming gas (N_2/H_2) at 300°C for 2 hours to remove adsorbed water and organic contamination before characterized in probe station. Figure 1(b) depicts the optical image of the fabricated $MoS₂ FET$ that enables 4 point measurements. The fabricated $MOS₂ FET$ exhibits the notable n-type semiconducting behavior with the \sim 15 V threshold voltage, as shown in Figure 1(c). A mild hysteresis is observed which is attributed to charge-trapping effects at the M_0S_2/SiO_2 interface. The mobility of MoS₂ channel has been extracted as 1.76 cm^2 V/s and 2.59 cm^2 V/s from 2 point and 4 point measurements, respectively. From the I_{DS} - V_{DS} curves shown in Figure 1(d, e), the resistance of MoS₂ channel is determined to be 2.75 Ω ⋅cm (2 point measurement) and 2.03 Ω ⋅cm (4 point measurement) at a gate bias V_{GS} of 60 V. The above results show that the contact resistance between MoS₂ and Ti (2.7 M Ω when V_{GS} =60 V) possibly resulting from the Schottky barrier plays an important role in the current transport of M_0S_2 FET. Therefore, in order to extract the intrinsic mobility of $MoS₂$, 4 point measurement needs to be applied.

In order to compare the mobility and resistance of MoS₂ sheet on the substrate and released from the substrate, the $MoS₂$ channel will be suspended with a vapour HF etching system (MEMSSTAR) and electrical characterization will be performed on the suspended M_0S_2 FET. In addition, the effect of substrate on the hysteresis of FET will be investigated.

^[1] R. Zhang, V. Koutsos, and R. Cheung, Appl Phys Lett **108**, 5 (2016).

^[2] W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, Acs Nano **7**, 791 (2012).

^[3] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat Nanotechnol **7**, 699 (2012). [4] Y. Guo, X. L. Wei, J. P. Shu, B. Liu, J. B. Yin, C. R. Guan, Y. X. Han, S. Gao, and Q. Chen, Appl Phys Lett **106**, 103109 (2015).

^[5] Z. Zhang, K. Yao, Y. Liu, C. Jin, X. Liang, Q. Chen, and L. M. Peng, Adv Funct Mater **17**, 2478 (2007).

^[6] R. Zhang, T. Chen, A. Bunting, and R. Cheung, Microelectron Eng **Submitted** (2016).

Figure 1: (a) Schematic of the back gated $MoS₂ FET$ fabrication. (b) Optical image of the fabricated MoS² FET. (c) Transfer characteristics of the MoS² FET obtained from two/four point measurements. Output characteristics of the MoS₂ FET obtained from two point (d) and four point (e) measurements. (f) Schematic of a suspended $MoS₂ FET$.