Thinning and doping of two-dimensional WSe₂ by vapour XeF₂

<u>R. Zhang¹</u>, V. Koutsos², R. Cheung¹

Scottish Microelectronics Centre¹, Institute for Materials and Processes² The University of Edinburgh, King's Buildings, Edinburgh, EH9 3FF, UK rui.zhang@ed.ac.uk

Two-dimensional (2D) transition metal dichalcogenides (TMDs), such as MoS₂ and WSe₂, associated with an intrinsic bandgap, have attracted tremendous interest due to their thickness scalable down to a monolayer without surface dangling bonds and with promising carrier transport properties [1]. Besides, TMDs-based thin film transistors (TFT) are free of short channel effects [2]. Since the electronic, mechanical and optical properties of 2D TMDs greatly depend on the number of atomic layers, an effective method for thinning 2D TMDs is essential. Recently, several TMDs thinning methods, e.g., plasma etching, laser thinning and thermal annealing, have been reported [3-7]. However, these thinning methods cannot achieve a good balance between efficiency and thickness uniformity. Here, we report a controllable, efficient and uniform thinning of WSe₂ with high selectively by vapour XeF₂. Meanwhile, a p-doping effect on WSe₂ due to XeF₂ treatment has been found, which facilitates the fabrication of logical circuits and diodes on the same WSe₂ flake.

For our experiments, the exfoliated WSe₂ flakes have been treated with XeF₂ gas mixed with N_2 as carrier gas in a XeF₂ etcher under different pressures. Then, both the thickness and roughness of WSe₂ flakes before and after XeF₂ treatment have been characterized using atomic-force microscopy (AFM). Figure 1(a) shows the etched thickness and root mean square roughness for different etching times. It is noteworthy that the surface after thinning are smoother than using fluorine based plasma and thermal annealing method [3,4,6], which is crucial to restrain surface scattering and thereby enhance mobility. In addition, XeF₂ thinning is more efficient, compared with focused ion beam (FIB), laser, and annealing methods [5-7]. Figure 1(b) depicts the Raman spectra of pristine and thinned WSe_2 flakes with same number of layer, indicating that the crystal lattices of WSe₂ flakes remain intact after XeF₂ treatment. Figure 1(c) compares XPS spectra of W 4f core level of exfoliated WSe₂ before and after XeF₂ treatment. After XeF₂ treatment, the $4f_{7/2}$ and $4f_{5/2}$ doublet of WSe₂ shows a downshift of ~0.5 eV, which indicates a Fermi level shift towards the valence band edge, suggestive of the presence of p-doping. With XeF₂ thinning under different pressures, a 20-layer WSe₂ flake has been thinned down to bilayer and then patterned into a channel of a TFT successfully, as shown in Figure 1(d). The electrical properties of the thinned WSe₂ further confirm the p-doping effect due to XeF₂ treatment. The details of the TFT fabrication process and electrical characterization of the TFT will be presented. In addition, the mechanism of p-doping effect induced by XeF₂ thinning will be discussed and reported.

^[1] H. Fang, M. Tosun, G. Seol, T. C. Chang, K. Takei, J. Guo, and A. Javey, Nano Lett 13, 1991 (2013).

^[2] D.-H. Kang et al., Acs Nano 9, 1099 (2015).

^[3] S. Q. Xiao, P. Xiao, X. C. Zhang, D. W. Yan, X. F. Gu, F. Qin, Z. H. Ni, Z. J. Han, and K. Ostrikov, Scientific Reports 6, 19945 (2016).

^[4] M. Chen, S. Wi, H. Nam, G. Priessnitz, and X. Liang, J Vac Sci Technol B 32, 06ff02 (2014).

^[5] D. Wang, Y. Q. Wang, X. D. Chen, Y. K. Zhu, K. Zhan, H. B. Cheng, and X. Y. Wang, Nanoscale 8, 4107 (2016).

^[6] J. Wu, H. Li, Z. Yin, H. Li, J. Liu, X. Cao, Q. Zhang, and H. Zhang, Small 9, 3314 (2013).

^[7] A. Castellanos-Gomez, M. Barkelid, A. M. Goossens, V. E. Calado, H. S. J. van der Zant, and G. A. Steele, Nano Lett **12**, 3187 (2012).

Figure 1: (a) Etched thickness (left axis) and surface roughness (right axis) of WSe₂ versus XeF₂ etching time. (b) Comparison of Raman spectra of pristine and thinned WSe₂ with different number of layers. (c) XPS spectra of W 4f core level of pristine and thinned WSe₂. (d) Optical image of thinning a 20-layer WSe₂ to bilayer with vapor XeF₂ and afterwards patterning the bilayer WSe₂ into a channel of TFT with Ti/Al as contacts (scale bars are 40µm).