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Abstract: I will show that some conventional statistical processing algorithms can
be equivalently carried out by nanoscaled optical systems, and such can be at least 3 or-
ders of magnitude faster and power efficient in forwarding propagation than an electronic chip.
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Computers that can learn, combine, and analyze vast amounts of information quickly, efficiently, and without the
need for explicit instructions are a powerful tool for handling large datasets. Indeed, statistical computing algorithms
have received an explosion of interest in both academia and industry for their utility in image recognition, language
translation, decision making problems, and more [1]. Traditional central processing units (CPUs) are far suboptimal
for implementing these algorithms [2]; and a growing effort in academia and industry has been put towards the devel-
opment of new hardware architectures tailored towards applications in artificial neural networks and deep learning [3].
Graphical Processing Unit (GPUs), Application Specific Integrated Circuits (ASICs) and field-programmable gate
arrays (FPGAs), have enabled both energy efficiency and speed enhancements for learning tasks. In parallel, hybrid
optical-electronic systems that implement spike processing and reservoir computing have been shown. However, the
computational speed and power efficiency achieved with these hardware architectures are still limited by electronic
clock rates and Ohmic losses.

Optical based statistical processing offer a promising alternative approach to microelectronic and hybrid optical-
electronic implementations. In fact, modern statistical computing algorithms are a promising fully-optical computing
paradigm because (1) they rely heavily on fixed matrix multiplications: linear transformations (and certain non-linear
transformations) can be performed at the speed of light and detected at rates exceeding 100 GHz [4] in photonic
networks, and in some cases, with minimal power consumption. (2) they have weak requirements on nonlinearities
and bit-resolutions: many inherent optical nonlinearities can be directly used to implement the nonlinear operations
in modern machine learning algorithms, and the nature of statistical computing significantly reduced the accuracy
requirement of each operation; and (3) once the machine learning model is trained, the architecture can be passive,
the computation on the optical signals will be performed without additional energy input.

A typical statistical machine learning architecture contains an input layer, at least one hidden layers, and an output
layer. In each layer, information propagate through linear combination (e.g. matrix multiplication) followed by some
nonlinear activation function applied to the result from linear combination. In training a machine learning model, data
are fed into the input layer, and output is calculated through the forward propagation step. Then the parameters are
optimized through the back propagation procedure. The general architecture of our optical statistical processing (OSP)
is depicted in Fig. 1A. It is mainly composed of three optical processing units:

1. Optical Interference Unit. Which is used to perform arbitrary unitary matrix multiplication on the input optical
signal. The unitary matrix can be obtained using a network of Mach-Zehnder interferometers, as shown in
Fig. 1D,E. Mathematically, it can be rigorously proved that any arbitrary unitary matrix can be represented by
the network of Mach-Zehnder interferometers [5] .

2. Optical Amplification Unit. Which is used to generalize the unitary matrix to arbitrary matrix operation. In
general, any arbitrary matrix can be generated using optical interference and linear amplification through SVD
decomposition.

3. Optical Nonlinearity Unit. Which is used to apply the nonlinear activation function. Many materials respond to
external light signals in a nonlinear way with respect to light intensity. One of the most commonly used optical
nonlinearities – saturable absorption in our system. The saturable absorber nonlinear function can be modeled
as στsI0 =

1
2

ln(Tm/T0)
1−Tm

[6], as shown in Fig. 1C.

With these three units, in principle, our OSP architecture can do computation in a way that is mathematically
equivalent to electrical computers.
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Fig. 1: (A) General Architecture of Optical Neural Network (ONN), one of the most popular example of statistical
machine learning (B) Decision boundary for a simple 2 dimensional, 3 classes classification problem trained on our
Optical Neural Network System. Three categories of data are labeled by different colors, areas are also labeled by
different colors based on predictions (C) The optical response of a nonlinear optical system (saturable abosrption)
that perform nonlinear calculation. Inset: Schematic illustration of the saturable absorption system. (D). Schematic
illustration of a single Mach-Zehnder Interferometer. (E) Microscope image of an experimentally fabricated 5×5 unit
on chip optical interference unit [7]

.I will also discuss optical implementation of several other statistical processing algorithms, and analyze the pros
and cons of using optics to implement those algorithms. Finally, I will discuss how to co-design optics processors and
algorithms.
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