
There is plenty of room … in more dimensions 
 
A simple harmonic oscillator (SHO) is one of the first problems introduced in a university Physics 
class and can be described by a 2nd order differential equation that has a simple, analytical 
solution: a sinusoidal response with a known period and amplitude. Perturbations of the SHO 
problem, adding a driving term, a damping term and/or a nonlinear spring constant, have 
periodic, deterministic solutions. A physical example of a SHO is a clamped-clamped beam, 
which can easily be fabricated using micromachining techniques. The expected response of the 
MEMS beam would seem to be very mundane. However, in our current work, we show that a 
simple clamped-clamped MEMS resonator, being driven by a single frequency tone, can exhibit 
both long term transient responses and complex, robust long-term repetitive responses. This is 
accomplished by allowing multiple modes of the simple beam to interact with each other, thus 
introducing more dimensions to the 2nd order differential equation through an internal mode 
coupling term. The interaction between modes creates bifurcations in the resonator response 
that yield more complex responses. A saddle node bifurcation is responsible for the long term 
transient response. The transient response is activated by the application of a short increase in 
the drive voltage (Fig. 1 red curve) that changes the response of the resonator. Following this 
drive amplitude pulse, the resonator moves away from a stationary operating point in phase 
space via an excursion and eventually returns to the stationary point (Fig. 1 blue curve). The 
transient response is robust and the resonator returns to the stationary operating point after 
each pulse. The timescale of this excursion is on the order of thousands of individual oscillations 
of the resonator. Other bifurcation structures can be encountered at different operating 
voltages and frequencies. At a slightly higher driving frequency, a saddle node on an invariant 
circle (SNIC) bifurcation creates long-term periodic behaviors on the same timescale as the 
transient response. Near the SNIC, the resonator does not have a stationary operating point, 
rather, the resonator moves in a specific trajectory in phase space, however, periodically 
encountering the remnant of the bifurcation. As the resonator moves along in phase space, it 
encounters a saddle point and ends up on one of the two excursions from the saddle point 
before returning back to the original trajectory. If left unperturbed, the resonator will 
continuously cycle through this response, randomly ending up on either of the two excursions 
(Fig. 2). However, the resonator can deterministically be controlled to end up on either of the 
excursions through the application of a small stimulus occurring at the correct time. As an 
example, the resonator can be forced to alternately execute the two excursions (Fig. 3).  
 
Through characterization of the MEMS resonator, we can determine all the coefficients in the 
mathematical model and show high fidelity between the results of the numerical simulations 
and the experimentally measured resonator response. Using the numerical results, we can 
create a controllable complex response system. Additionally, the resonator can serve as a 
model for other complex, dynamical systems with similar mathematical models such as 
excitable or bursting neurons. The resonator can offer a physical platform for understanding 
how a system can be both robust and adaptable while incorporating physical factors that aren’t 
always captured by mathematical models. Going forward, we plan to explore the complex 
responses of MEMS resonators that are “hidden” in higher dimensions and ways to control and 
use them for greater understanding of similar dynamical systems. 



 

Figure 1 Graph showing a transient response of the resonator (blue) to a short stimulus pulse (red). After the transient response, 
the resonator returns to its original operating position in phase space. Repeated stimuli show the same response. 

 

Figure 2 Graph showing the two excursions of the resonator resulting from the saddle point. If left unperturbed, the resonator 
randomly moves through both excursions. 

 

Figure 3 Graph showing the response of the resonator to the same operating conditions as in Fig. 2 with a short stimulus applied 
to the resonator at the correct time, forcing specific excursions. In this case, alternating excursions are shown. 


