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The majority of spectral lines relevant in high energy astrophysics exist at soft 

X-ray wavelengths (6-62 Å), where diffraction gratings dominate over energy-

dispersive detectors such as microcalorimeters. In a typical X-ray grating spectrometer, 

arrays of gratings are positioned to intercept and disperse the radiation coming to a 

focus in a Wolter-I telescope where a detector, such as a CCD camera, placed at the 

focal plane is used to image the dispersed spectrum. Reflection gratings suited for this 

application require a custom groove layout with variable line spacing over a large area 

(tens of square centimeters) to match the convergence of the telescope and blazed 

groove facets to maximize throughput in a particular band of interest [1]. For a given 

geometrical collecting area for spectroscopy, sensitivity is proportional to the 

diffraction efficiency of the gratings. Further, spectral resolving power hinges groove 

spacing precision over a large area. Therefore, the study of grating fabrication is of 

particular importance for improving the spectroscopic capabilities of future 

instruments. The reflection grating spectrometer on board XMM-Newton, which 

utilizes replicas of a mechanically ruled master grating, has been in use for 15 years and 

had provided large amounts of scientific return. Leveraging from this instrumentation, 

next-generation X-ray reflection gratings are under development to improve spectral 

resolving power and sensitivity for future observatories [2].  

Beyond mechanically ruled gratings, the fabrication process for blazed X-ray 

gratings has largely centered on the production of a large-area master grating through 

techniques in electron-beam lithography, plasma etching and anisotropic wet etching 

using potassium hydroxide (KOH) in monocrystalline silicon to provide a blaze. Then, 

this master grating can be used to direct-stamp many replicas using ultraviolet assisted 

nanoimprint lithography (UV-NIL) [2,3,4,5]. However, there are some limitations that 

prevent these gratings from meeting the performance requirements. As a result, 

alternative lithographic techniques have been explored to manufacture these blazed 

gratings. In particular, grayscale e-beam lithography (GEBL) coupled with polymer 

reflow is being pursued to fabricate blazed grating topographies in positive tone 

electron-beam lithography resist such as PMMA and ZEP520; this technique is known 

in the literature as thermally activated selective topography equilibration (TASTE) [6]. 

Additionally, as an alternative to UV-NIL, grating replication efforts are moving 

toward substrate conformal imprint lithography (SCIL) [6], which is beneficial 

especially for large areas. In contrast to direct-stamp UV-NIL, the SCIL process uses a 
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flexible stamp formed from the master template for imprinting. Further, SCIL is 

compatible with silica-based NanoGlass sol-gel imprint resist that has been found to 

exhibit low facet roughness when coated with metals for soft X-ray reflectivity. 

TASTE is currently being pursued at the Pennsylvania State University 

Materials Institute Nanofabrication Laboratory to fabricate X-ray grating masters [7]. 

Additionally, SCIL is being pursued in collaboration with Philips SCIL Nanoimprint 

Solutions to produce replicas for X-ray spectrographs on board sounding rocket 

experiments. Here, results of the integration of TASTE and SCIL for grating fabrication 

along with X-ray optical tests results characterizing diffraction efficiency are presented 

(see Figs. 2, 3 and 4).    
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Figure 1: Off-plane, grazing incidence grating geometry (left). Gratings integrated in a Wolter-I telescope (right). 

 

 



 
 
Figure 2: AFM measurements of TASTE grating patterns in PMMA [7]. 

 

 

Figure 3: AFM measurements of gratings fabricated using SCIL in sol-gel resist, bare (top) and Cr/Au coated 
(bottom). Replicas produced from a KOH-etched master grating.  

 

Figure 4: X-ray optical test results gathered from the Advanced Light Source at Lawrence Berkeley National 
Laboratory: The TASTE grating from Fig. 2 (left) and the SCIL imprint from Fig. 3 (right).  

 


