Fabrication of Microdevices for Thermal Stability Analysis of DNA

Sarah M. Robinson

Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742; National Institute of Standards and Technology, Physical Measurement Laboratory, Gaithersburg, MD 20899; sarah.robinson@nist.gov

Jon R. Askim, Christopher B. Montgomery, Steve Semancik National Institute of Standards and Technology, Materials Measurement Laboratory, Gaithersburg, MD 20899

Herman O. Sintim

Department of Chemistry, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907

Technologies that rapidly measure the thermal stability of analytes on a costefficient platform for high-throughput screening can play a key role in both drug discovery and biomolecular characterization. The melting temperature, $T_{\rm m}$, informs on the inherent stability of a biomolecule and can therefore be used to probe stabilizing factors, such as salt concentration or drug molecule binding. Electrochemical measurements on immobilized biomolecules offer a means for analytical characterization on small sample volumes with high sensitivity.¹ The development of an electrochemical platform that couples a planar three-electrode microdevice with an embedded platinum thin film, which can function both as a platinum resistance thermometer (PRT) and a resistive heater is described (Figure 1).^{2,3} Our electrochemical platform is unique in having both localized temperature control and biomolecule monitoring capabilities. Fabrication steps for these devices involved sputtering a serpentine platinum thin film on top of a fused silica wafer. The platinum was insulated with 350 to $1000 \,\mu\text{m}$ SiO₂ film and then a set of three surface electrodes was deposited for electrochemical analysis. The microscale platform enables electrochemical characterization of temperaturedependent biomolecular phenomena (using $\leq 10 \,\mu$ L of analyte). Thermal profiles of immobilized DNA secondary structures were measured as were ligand-induced stability changes caused by binding of small molecule drugs to DNA (Figure 2).³ These experiments showed proof-of-concept for screening libraries of compounds for drug discovery. The design, fabrication, platform assembly, and measurement automation of a two-device array are discussed and shown to be compatible with extension to larger multielement arrays that can facilitate high-throughput screening and characterization.

¹ D. Grieshaber, R. MacKenzie, J. Vörös, and E. Reimhult, Sensors 8(3), 1400–1458 (2008).

² Z. Shen, H. O. Sintim, and S. Semancik, Anal. Chim. Acta **853** 265-270 (2015).

³ S. M. Robinson, Z. Shen, J. R. Askim, C. B. Montgomery, H. O. Sintim, and S. Semancik, Biosensors **9**(2) (2019).

Figure 1: Three-electrode microdevice: (a) SEM micrograph of platinum thin film before insulation. (b) Optical micrograph of completed microdevice with labeled Au working electrode (WE), Pt reference electrode (RE), and Pt counter electrode (CE).³

Figure 2: Measurements of Ligand Stabilization of Duplex DNA: (a) Square wave voltammograms of 2 μ mol/L methylene blue-labeled cDNA in 10 mmol/L PBS with 100 mmol/L NaCl, pH 7.4. (b) Melting curves (normalized) of duplex in the absence (black) and presence of 13 μ mol/L diminazene aceturate (DMZ) (purple).³