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Thermal nanoimprinting provides direct nanofabrication of a wide variety of materials. The results of 

the process, such as the shape, are determined by the mechanical properties of the material, such as its 

elastic modulus, the process conditions, such as temperature and pressure, and the geometric 

conditions, such as the size of the mold pattern. When using a new material or shape, the 

nanoimprinted is predicted by simulation based on the mechanical properties of the material, and 

experimentally confirm the process conditions. 

In case of a change in material or modification of required profile, an amount of measurement of 

material property and experiments are required to design the revised processes. However, sometimes it 

is difficult to measure mechanical properties or additional experiments are restricted. 

In this work, we have proposed a hybrid machine learning system that presents the optimum 

materials and process conditions for direct nanoimprint.  In nanoimprint process, few report has been 

published to predict pattern defects[1], but process and material design has not yet approached.  

Figure 1 shows schematics of the hybrid machine learning systems. Machine learning based on 

experiments is performed under limited experimental conditions. On the other hand, based on the 

simulation results under various conditions, machine learning is performed to supplements the 

experimental learning results which does not handled in the experiments under some assumptions and 

approximation.  As a result, processing results for unknown properties of materials could be 

predicted and we can get suggested materials and process condition.   

We applied actual process design as follows. For instance, PVA (Polyvinyl Alcohol), a water-soluble 

resin, has been used as a disposable mold and sacrificial layer. However, when PVA is heated over 

150°C, its water solubility is impaired. To solve the problem, we newly try to lower the pressing 

temperature by mixing Glycol into PVA. However, there is no information to confirm the molding 

temperature and needs large amount of experiment for optimize the concentration of Glycol and 

process temperature.  

 The thermal characteristics of the elastic modulus of the resin was approximated to be acrylic resin, 

noting that the thermal characteristics of the elastic modulus shows almost similar characteristics after 

the glass transition temperature of the resin. We also noted that the pattern profile after imprint was 

determined in a normalized form by the ratio of press pressure to the modulus of elasticity of the resin 

and the geometric dimension ratio of the mold pattern [2].  

By learning the results of a small number of experiments under constant pressure condition and 

varying both the press temperature and PVA concentration, we can predict the results at a constant 

press pressure as demonstrated in Fig.2 (a). On the other hand, by learning of the simulation results in 

which the relative pressing pressure and relative shape are varied, we can predict the molding results 

for different pressing pressures as demonstrated in Fig.2 (b). 

Based on these two predictions, the system can, for example, suggest the PVA concentration, press 

temperature, and press pressure to obtain the desired molding results. It is also possible to predict the 

outcome of a decision under specific conditions. Figure 2 shows comparison with experiments and 

predictions of the pattern height in various pressures, temperatures under 10% PVA contain resin.  

The hybrid learning successfully predicts the experimental results even for unknown characteristic of 

resin property. 
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Fig.1. Schematics of the shrinkage and correction models  
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  a)  Experimental learning under constant pressure    b) Simulation learning without Glycol 

 

 

10

Pressure [MPa]

0 3020

P
a

tt
e

rn
h

e
ig

h
t 

[μ
m

]

2.5

0

1.0

2.0

120℃
140℃

Deep Learning

▲ 120℃

■ 140℃

Experiments

 
c) Comparison with the experimental results (Not learning data) of predicted pattern height under 

various pressure and temperature at Glycol concentration=10% 

 (lines: machine learning, ■ and▲:experiments) 

 

Fig.2. Proposal of Glycol concentration and process conditions for PVA direct imprint process. 

 


