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Many unique surface wetting properties are found in nature based on complicated micro-
scale surface topography. The most common example is superhydrophobicity of the lotus 
leaf, which combines microscale bumps with superposed nanohairs [1, 2, 3]. Furthermore, 
nature has evolved structures that passively transport water droplets: a surface tension 
gradient and a Laplace pressure difference helps Namib beetles to harvest water out of fog, 
for example. This structure consists of a biphilic (hydrophilic/hydrophobic) surface, which 
promotes mass transfer via droplet rolling along the tilted elytra to the mouth of the beetle 
[4]. 
 
In this work, we investigate two approaches of microfabrication for mimicking such effects in 
engineered materials: micro-milling and laser-etching in combination with ion-beam surface 
modification techniques to influence on surface wetting properties. Ion-beam post-
processing, like ion-beam deposition, provides a nanoroughness over a microstructure, and 
like ion implantation a controllable change in the Gibbs surface energy of the substrate 
material.  These properties, combined with the micro-scale surface engineering via milling or 
laser etching, should provide sufficient degrees of freedom to achieve simultaneous 
hydrophobicity and mass-transport, for application in atmospheric water harvesting or 
condensation control on industrial heat exchangers. 
 
We investigate the surface wetting properties for a range of micro/nanofabricated aluminium 
surfaces (Fig. 1) via imaging goniometry (Fig. 2). We compare in-plane spreading for control 
(smooth) surfaces, and micro-patterned surfaces and combined micro-patterned and ion-
beam processed surfaces. This combination of micro and nanofabrication methods is 
promising for coating-less surfaces with unique wetting characteristics to enhance liquid-solid 
interaction. Such surfaces have potential applications in advanced heat-exchanger technology 
(increasing the air-side heat transfer coefficient during condensation) [5] and wind turbine 
technologies (delaying or eliminating ice/frost formation under extreme weather conditions) 
[6]. 
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Figure 1. CA compared with CAH of different Al-samples with and without processing: 
(left) for parallel view, (right) for orthogonal view (pol – polished, “faced” means 

“levelled”). 
 

 
 

Figure 2. Anisotropic spreading of a water droplet on a processed surface: (left) parallel 
view, (right) orthogonal view 


