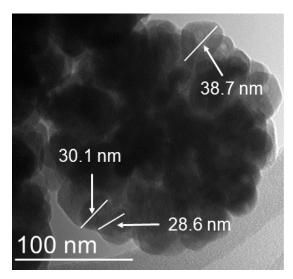
Induction Heating of Magnetically Susceptible Nanoparticles for Enhanced Hydrogenation of Oleic Acid

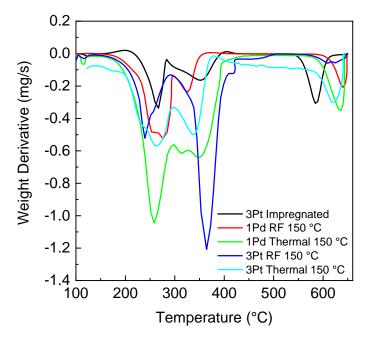
<u>C. Roman¹</u>, N. de Silva Moura¹, S. Wicker², K. Dooley^{1*}, and J. Dorman^{1*} ¹ Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803 ²Department of Chemistry, Rhodes College, Memphis, TN 38112 ^{*}dooley@lsu.edu and*jamesdorman@lsu.edu

Fatty acid hydrogenation has greatly improved reactor and catalysts design, but all processes use conventional reactor heating¹. Radiofrequency (RF) induction heating has emerged as a potential replacement candidate as the heat is dependent on the magnetic moment of magnetic materials ^{2,3} and is localized at the surface of a magnetic susceptor. This can lessen the surface-substrate interface temperature gradient, limiting unwanted side reactions². An active and magnetically susceptible catalyst needs to be designed and evaluated to take advantage of this mechanism. Therefore, Pd/Fe₃O₄ and Pt/Fe₃O₄ catalysts were synthesized, and the improved activity and selectivity of RF heating was demonstrated by comparing the RF heating to conventional thermal heating through the hydrogenation of oleic acid.

Hollow mesoporous microspheres composed of 28-32 nm Fe₃O₄ nanoparticles (Figure 1) were decorated with 1 wt.% Pd (1Pd-Fe₃O₄) and 3 wt.% Pt (3Pt-Fe₃O₄). Using a glass semi-batch reactor, three bulk temperatures of 50, 110, and 150 °C under 1.01 bar of H₂ were used. For 1Pd-Fe₃O₄, the conversion of oleic acid was 28% higher 70 °C, but the conversions converged and reached an equilibrium limit of ~85% for the two higher temperatures. Both methods demonstrated similar selectivities across all temperatures. While 3Pt-Fe₃O₄ was significantly less active and produced more cracked and heavy acids as products, the RF heating increased conversion by 5-6% over conventional across the temperature range. Furthermore, RF systematically increased selectivity to stearic acid (the expected primary product) 15 % at the two higher temperatures.


TPO was performed on the high temperature, used catalysts (150 °C) to quantify the coke deposition (Figure 2). The conventional heating of the Pd catalyst resulted in 6.5 wt.% coke as expected based on literature. However, no coke was found after the RF-driven reaction. In contrast, both RF and conventional heating generated coke on the Pt decorated samples. The increased coking of the RF 3Pt-Fe₃O₄ (11% compared to 6.3%) is attributed to the suppression of cracking and increased acid condensation reaction⁴ that is suppressed upon RF-heating of the Pd catalyst, implying better long-term stability. Overall, RF has shown improved selectivity that cannot be explained solely by temperature.

¹P. Mäki-Arvela, J. Hájek, T. Salmi, and D. Y. Murzin, Applied Catalysis A: General **292**, 1 (2005).


²T. K. Houlding and E. V. Rebrov, Green Processing and Synthesis 1, 19 (2012).

³S. Ceylan, L. Coutable, J. Wegner, and A. Kirschning, Chemistry – A European Journal 17, 1884 (2011).

⁴J. Fu, X. Lu, and P. E. Savage, ChemSusChem 4, 481 (2011).

Figure 1: TEM of the hollow mesoporous Fe_3O_4 support highlighting the diameter of the Fe_3O_4 nanoparticles.

Figure 2: Weight derivatives from TPO (air, 10 °C/min) for stearic acidimpregnated fresh 3Pt-Fe₃O₄ catalyst and spent RF and thermal catalysts (150°C).