## Analog content-addressable memories with 2D floating-gate memory transistor

<u>Guoyun Gao</u>, Bo Wen, Can Li Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China guoyun@hku.hk, canl@hku.hk

In the era of Big Data, the data transfer bottleneck in data-intensive applications demands in-memory computing hardware, for efficient processes on edge devices. Content addressable memories (CAM) are in-memory computing with commercial success because they offer extremely high throughput but at the expense of high energy consumption. Therefore, applications are limited to highly specialized scenarios, such as network routing. Analog CAM<sup>1-2</sup> has been proposed recently to further increase memory density and reduce energy consumption. Still, silicon-based transistors have bottlenecked the performance and prevented the three-dimension stack-ability.

Here, we propose and build analog CAM based on two-dimensional (2D) floating gate field-effect transistors (FGFET) to tackle bottlenecks imposed by silicon transistors. 2D transition metal dichalcogenides (TMDs), *i.e.*, MoS<sub>2</sub>, based FGFETs offer atomic-scale thickness channel, high current ON/OFF ratio, ideal subthreshold characteristics even at nanoscale gate length, relatively high mobility, negligible drain capacitance, large memory window, and appealing 3D stackability<sup>3-5</sup>. Therefore, it would be an ideal candidate for building analog CAM.

Our proposed 2D FGFET analog CAM cell is composed of two MoS<sub>2</sub> FGFETs connected in parallel (Fig.3a). Fig. 1&2 show the fabrication process of a  $2 \times 8$  devices array. Benefiting from the 2D property of monolayer MoS<sub>2</sub> continuous film and high- $\kappa$  dielectric (HfO<sub>2</sub>), the device shows a small program voltage, a steep subthreshold slope, and a large memory window(~3V) with a large memory ON/Off ratio (10<sup>8</sup>) (Fig.3b). The threshold voltage of each transistor, representing the lower and higher searching bound of analog CAM respectively, can be continuously tuned by program pulses to the control gate. Fig. 3c demonstrates that the searching higher bound can be tuned experimentally in our physical analog CAM. Fig. 3d shows the simulated operation with our custom experimentally validated model. We expect large-scale 2D FGFET-based analog CAM to be a promising build block for a near-sensor explainable tree-based machine learning accelerator. Our findings highlight the potential of atomically thin semiconductors for developing next-generation high-speed and low-power edge devices.

<sup>&</sup>lt;sup>1</sup> C. Li, *et al.*, Nat Commun 11, 1638 (2020).

<sup>&</sup>lt;sup>2</sup> G. Pedretti, et al., Nat Commun 12, 5806 (2021).

<sup>&</sup>lt;sup>3</sup> G. Migliato Marega, et al., Nature 587, 72 (2020).

<sup>&</sup>lt;sup>4</sup> S. B. Desai, *et al.*, Science 354, 99 (2016).

<sup>&</sup>lt;sup>5</sup> F. Wu, *et al.*, Nature 603, 259 (2022).



*Figure 1: The schematic of fabrication processes of*  $MoS_2$  *floating-gate memory transistors.* (a) Prepare bottom gate with photolithography, depositing 5/40nm Cr/Au, and liftoff process. (b) Cover the bottom gate with 18nm HfO<sub>2</sub> by ALD. (c) Prepare floating gate with photolithography, depositing 2nm Pt, and liftoff process. (d) Cover the floating gate with 7nm HfO<sub>2</sub> by ALD. (e) Transfer monolayer MoS<sub>2</sub> continuous film with PMMA in DI water. (f) Pick up floating PMMA/MoS<sub>2</sub> membrane by the prepared substrate. (g) Dissolve PMMA in acetone and pattern MoS<sub>2</sub> film with RIE. (h) Prepare contact electrodes with photolithography, depositing 5/40nm Cr/Au, and the liftoff process. In all the photolithography processes, a double-layer photoresist (LOR/AZ5214E) was used for easy lift-off.



*Figure 2: The Optical microscope images of MoS*<sub>2</sub> *floating-gate memory transistors array.* (a) The prepared substrate with 18 nm HfO<sub>2</sub> as the blocking oxide layer, 2 nm Pt as the floating gate, and 7 nm HfO<sub>2</sub> as the tunnelling oxide layer. (b) Monolayer MoS<sub>2</sub> Continuous film was transferred to the prepared substrate. (c) As-fabricated devices array. The scale bars, 10µm. (d) The overall view of the final devices array. The scale bar is 200µm.



Figure 3: The electrical performance of the analog CAM based on two  $MoS_2$  FGFETs. (a) Schematic of our proposed 2D floating-gate analog CAM circuit, composed of two  $MoS_2$  FGFET, a clocked inverter for the search line (SL), and a sense amplifier (SA) for the match line (ML). Voltage amplitude on the SL provides search input and the matching result is sensed on the ML. (b) Programmed I<sub>D</sub>-V<sub>G</sub> transfer characteristic curves of the  $MoS_2$  FGFET with different program voltages (6V~10V). (c-d) The test and simulation results of the 2D floating-gate CAM cell for matching with different upper bounds. These bounds were determined by the programmed V<sub>th</sub> of the two floating-gate memory transistors. The search input voltage was applied on the search line and control gate, and the voltage on the ML will keep if the input voltage value is within the matching range.