Fabrication of Memristive Network Devices on Nanomembranes

Mingze Chen, Xiaoqiu An and Xiaogan Liang*

Mechanical Engineering Department, University of Michigan, Ann Arbor, MI 48109

Wearable electronic devices on flexible substrates with various functionalities have been wildly applied in mobile monitoring and healthcare applications. The working principles of most current wearable sensing devices are based on the resistance modulation of the printed metallic channels.[1,2] To integrate more sophisticated functions in such devices, researchers have been demanding new methods to produce semiconductor structures, especially 2D semiconductor patterns on flexible substrate.[3-5] However, synthesis and patterning of 2D semiconductor device patterns on flexible polymeric substrates remain challenging, because the conventional fabrication routes based on resist-based lithography and plasma etching processes are not compatible with most polymeric substrates. In addition, current standard device cleaning methods (e.g., piranha and RCA processes) can seriously damage the electrical and mechanical properties of the devices and degrade the device-to-device consistency. Recently, we demonstrated a multiplexing rubbinginduced site-selective (RISS) method capable of generating pre-defined 2D material patterns on SiO₂ surfaces with no need of additional lithography or etching processes.[6] In the last EIPBN presentation, we further presented the RISS-produced Bi₂Se₃ memristive sensory devices, implying the potential application of such devices in the fields related to neuromorphic controlling and computing.[7] To integrate such RISS-produced devices on flexible polymeric substrates, additional fabrication-oriented research effort is demanded.

In this paper, we report our recent progress in leveraging the multiplexing RISS technology to realize site-selective production of 2D semiconductor features on inorganic nanomembranes which can be subsequently transferred to polymeric substrates, remaining a good flexibility. The demonstrated Bi₂Se₃ device channel arrays show a high crystallinity, and the fabrication process is highly repeatable. We further report the memrsitive switching characteristics of such RISS-produced Bi₂Se₃ memristors, which paves the way for producing memristive sensory networks on flexible substrates.

Our current multiplexing RISS process includes two main steps: (i) controllable rubbing of a SiO₂ nanomembrane (thickness 20 - 500 nm) with a template bearing pillar arrays to pre-define the locations and shapes of target Bi₂Se₃ device patterns (i.e., triboelectric charge patterns); (ii) site-selective chemical or physical deposition of few-layered semiconductor patterns (e.g., Bi₂Se₃ and MoS₂) at the designated locations. **Fig.1(a-d)** shows the schematic illustration of the rubbing process and the growth of Bi₂Se₃ patterns, and **Figs. 1 (e)** displays the photo of our lab-built system for performing multiplexing RISS processes. **Fig.2 (a)** shows the optical micrograph of RISS-produced Bi₂Se₃ memristive channel networks on 25nm thick SiO₂ nanomembranes, and **(b)** shows the high-resolution TEM image of a Bi₂Se₃ channel on a SiO₂ nanomembrane.

This work presents a novel nanomanufacturing method for fabricating Bi₂Se₃ memristive networks on nanomembranes, which could be further transferred onto flexible polymeric substrates. Additional details of the presented fabrication method as well as device demonstrations will be presented in the formal presentation.

[1] Hu, L., Chee, P. L., Sugiarto, S., Yu, Y., Shi, C., Yan, R., ... & Huang, W. (2023). Hydrogel-based flexible electronics. Advanced Materials, 35(14), 2205326.

[2] Nie, B., Liu, S., Qu, Q., Zhang, Y., Zhao, M., & Liu, J. (2022). Bio-inspired flexible electronics for smart E-skin. Acta Biomaterialia, 139, 280-295.

[3] Mirshojaeian Hosseini, M. J., & Nawrocki, R. A. (2021). A review of the progress of thin-film transistors and their technologies for flexible electronics. Micromachines, 12(6), 655.

[4] Chen, H., Wei, T. R., Zhao, K., Qiu, P., Chen, L., He, J., & Shi, X. (2021). Room-temperature plastic inorganic semiconductors for flexible and deformable electronics. InfoMat, 3(1), 22-35.

[5] Corzo, D., Tostado-Blázquez, G., & Baran, D. (2020). Flexible electronics: status, challenges and opportunities. Frontiers in Electronics, 1, 594003.

[6] Chen, M., Ki, S., & Liang, X. (2021). Multiplexing implementation of rubbing-induced site-selective growth of MoS2 feature arrays. Journal of Vacuum Science & Technology B, 39(6).

[7] Chen, M., Ki, S. J., & Liang, X. (2023). Bi2Se3-Based Memristive Devices for Neuromorphic Processing of Analogue Video Signals. ACS Applied Electronic Materials, 5(7), 3830-3842.

Fig.1 Illustration of the multiplexing RISS process for making Bi2Se3 memristor arrays: (a) a Si template bearing Au-coated pillars brushing on a SiO₂/Si substrate; (b) generation of triboelectric charge patterns through a stage-controlled rubbing process; (c) site-selective deposition of Bi₂Se₃ arrays in the rubbed areas on the SiO₂/Si substrates; (d) fabrication of the electrodes of the Bi₂Se₃ memristors; (e) photo of the lab-built system for performing multiplexing RISS processes.

Fig.2 (a) Optical micrograph of a representative array of RISS-produced Bi₂Se₃ memristive channel on 25nm thick SiO₂ nanomembrane, 500nm thick SiO₂ nanomembrane and 200µm thick SiO₂ substrate; (b) high-resolution TEM image of Bi₂Se₃ thin film on SiO₂ nanomembrane.