## Electrical switching behaviors in Two-demensional flake of BaTiS<sub>3</sub>

Hongming Zhang<sup>1,3</sup>, Nan Wang<sup>1,3</sup>, Jiangbin Wu<sup>1</sup>, Huandong Chen<sup>1</sup>, Jian Zhao<sup>1</sup>, Ting-Hao Hsu<sup>1</sup>, Jayakanth Ravichandran<sup>1\*</sup>, Han Wang<sup>2\*</sup>, Wei Wu<sup>1\*</sup>

1. Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA.

2. Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong, China.

<sup>3</sup>These authors contributed equally

e-mail: hongming@usc.edu; wu.w@usc.edu

## Abstract:

The exploration of novel electronic materials is very important. Our study focuses on the electrical switching behavior in BaTiS<sub>3</sub>. Based on calculations, ferroelectricity is predicted to exist in BaTiS<sub>3</sub> at room temperature. This ferroelectric behavior originates from the polar displacement of Ti atoms. In this work, we firstly observed the ferroelectric-like electrical switching behavior in Two-demensional BaTiS<sub>3</sub>. And we found two distinct phenomena—memristor-like and ferroelectric-like electrical switching—within the same material, presenting a unique and unprecedented phenomenon. Our work encompasses a comprehensive characterization of these phenomena, study their individual properties, interactions and mechanisms. The presented results pave the way for innovative applications and further exploration of the potential of BaTiS<sub>3</sub> in emerging electronic technologies.

In this study, we exfoliated the BaTiS<sub>3</sub> flakes from bulk BaTiS<sub>3</sub>. As shown in Fig.1, there are two different kinds of Two-dimensional BaTiS<sub>3</sub>: ac-plane flakes, demonstrating anisotropic properties, and ab-plane flakes, displaying isotropy. The hysteresis loop during the double sweep of electric field for phase and amplitude in Fig.2 is the evidence of the piezoelectric. This observation confirms the piezoelectric effect alone the a-axis. In Fig.3, we further measure the I-V curves and C-V curves for ab-plane devices, and also found the corresponding switching behavior.

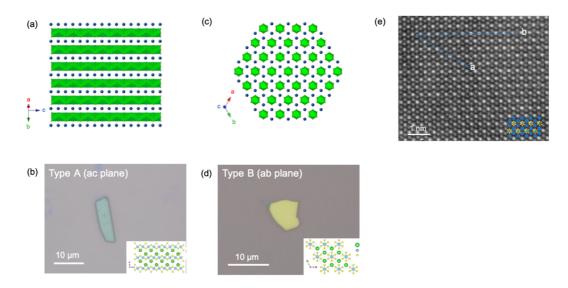



Fig. 1. BTS flakes with different morphologies and orientations. (a)(c). Structure diagram for ac-plane BTS and ab-plane BTS<sup>[1]</sup>. (e). STEM images of ab-plane BaTiS<sub>3</sub>

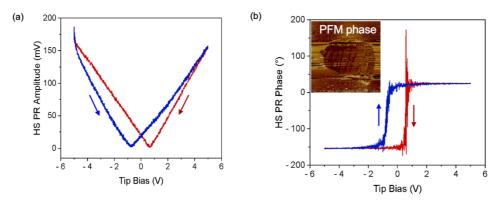



Fig. 2. Vertical PFM measurements for BaTiS<sub>3</sub> flake

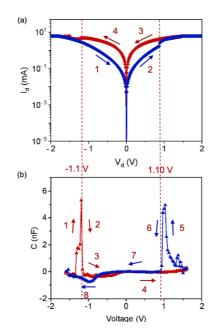



Fig. 3. Ferroelectric-like electrical switching. (a). I-V measurement. (b). C-V measurement

[1]. Zhao B, Hoque MS, Jung GY, Mei H, Singh S, Ren G, Milich M, Zhao Q, Wang N, Chen H, Niu S. Orientation-controlled anisotropy in single crystals of quasi-1D BaTiS3. Chemistry of Materials. 2022 Jun 10;34(12):5680-9.