Assessing Feasibility of Nanoporous Copper Powders and Hybrid Feedstocks with Copper Nanoparticles for Laser Powder Bed Fusion

L. Duenas Gonzalez, N. Kublik, B. Azeredo Arizona State University, Tempe, AZ 85281 lduenasg@asu.edu

The integration of Nano-porous metals (NPMs) into Additive Manufacturing (AM) has garnered significant attention due to their capability to construct intricate three-dimensional structures with nanoscale features in a high-throughput manner, allowing to exploit the inherent size-dependent properties of the NPMs, such as their high surface area and conductivity¹, especially in the areas of energy storage and biomedicine^{2,3}. One approach for the integration of NPMs into AM is to use nano porous powder as feedstock for Laser Powder Bed Fusion (LPBF) as nanoporous copper (np-Cu) powders, for instance, present reduced reflectivity measured as 36% lower than its solid counterpart⁴, and thus a great potential to significantly reduce energy requirements during printing. Additionally, they exhibit a considerably lower sintering temperature, equivalent to only 46% of solid copper's melting temperature⁵. This work exploits the potential application of this innovative strategy through analyzing flowability, spreadability, and homogeneity of chemically dealloyed np-Cu powders and hybrid feedstocks including Cu nanoparticles (np-Cu/Cu NPs), to ensure homogeneous powder layer deposition during printing. Initial findings from single-layer powder beds (90x90x0.05mm³) deposited through Doctor Blade coating method confirmed that spreadability is adversely affected by humidity⁶ and revealed nanoparticle content dependence. Upcoming investigations comprehend additional spreadability analysis for different layer heights, as well as homogeneity investigation of feedstocks with varied np-Cu:Cu NPs ratios by optical micrographs and Hall flowability measurements.

¹ Materials 2020, 13(17), 3706

² MRS Bulletin 2018, 43(1), 43-48

³ Nano Select 2021, 2(8), pp.1437-1458.

⁴ MSEC 2023 (Vol. 87240, p. V002T08A005)

⁵ Applied Materials Today, 32, 101802

⁶ Prog Addit Manuf 2019, 4, 383–397