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Transistors based on 2D materials, such as MoS:, hold promise for logic device
scaling due to their sub-nanometer thickness and energy efficiency with low off-
currents. However, they have electron mobilities of 20 to 30 cm?/V-s that fall short
of the International Roadmap for Devices and Systems projected requirements,
100 cm?/V-s for 2nm node GAAFETS!. Strain engineering, successfully applied in
commercial Si MOSFETS, is a candidate for enhancing electron mobilities in
MoS.. Promising results including silicon nitride capping® and strain via pre-
structured substrates® were introduced. We recently demonstrated up to an 8-fold
mobility enhancement in monolayer MoS; FETs with 1% tensile strain through
the mechanical elongation of the 2D layer during an imprinting process.* All
presented approaches where strain is induced on pre-structured surfaces rely on
polymer-assisted material transfer from a growth substrate to target surfaces. Such
approach faces challenges in nanoelectronics compatibility and scalability, as
defects and contamination limit its potential for high-yield production.

As a remedy, we present a new approach in which strain in MoS: is introduced
during its growth process using a grayscale-patterned thin film (patent-pending),
instead of a flat substrate. During the cooling phase, the respective surface length
change for flat and grayscale (sine-shaped) segments differ due to thermal
expansion mismatch between the Si or sapphire substrate and thin film SiO>. This
results in deterministically induced strain in grown 2D materials, depending on the
depth-to-pitch ratios of the patterns (Figure 1). Sine-shaped SiO» patterns were
fabricated using grayscale nanoimprint lithography followed by pattern transfer
from resist into SiO,. The surface roughness was controlled through thermal
annealing steps and gentle plasma etching.® Grayscale stamps used for this
nanopattern replication were made by thermal scanning probe lithography and dry
etching. The CVD-grown MoS; on the sine-shape surface resulted in up to 0.8%
tensile strain, which is known to improve FET mobilities* to >100 cm2/V's,
confirmed by the 40 meV photoluminescence (PL) peak shift (Figure 2). The
presented approach that combines grayscale lithography and transfer-free strained
growth of 2D materials is CMOS-compatible, scalable, and allows for
reproducible fabrication of strain-engineered high-mobility FET channels.
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a Standard approach: 2D material growth on flat surface and strain on patterned surface after transfer

- -

Precursor coating 2D material growth

Polymer coating

defects, voids, cracks

Detachement

defects, voids, cracks, wrinkles, contaminants

Transfer to target substrate

Polymer removal
and strain

b This work: Direct strained growth of 2D materials on non-planar surfaces
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Figure 1: Schematics of (a) conventional 2D material growth and transfer for strain, and
(b) strain-engineered growth on non-planar surfaces with (c) analytically calculated

details.
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Figure 2: Photoluminescence (PL) mapping of MoS: grown on flat and grayscale
nanopatterns fabricated on (a) thermal SiO2 on silicon (surface fully covered) and (b)
PECVD SiO2 on sapphire (isolated triangular or merged flake). (c) AFM image, showing
conformally grown MoS> on the pre-patterned substrate from (a). (d) Calculated strain
values vs depth-to-pitch ratio (dashed line) and measured PL energy peak shifts vs depth-
to-pitch ratio.



